Renal transplant handbook

1 Scope
To be used by members of the renal transplant service.

2 Purpose
To maintain consistent and high standard care for patients receiving renal transplants.

3 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR</td>
<td>antibody-mediated rejection</td>
</tr>
<tr>
<td>APTT</td>
<td>activated partial thromboplastin time</td>
</tr>
<tr>
<td>ATG</td>
<td>anti-thymocyte globulin</td>
</tr>
<tr>
<td>ATN</td>
<td>acute tubular necrosis</td>
</tr>
<tr>
<td>BKV</td>
<td>BK virus</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalovirus</td>
</tr>
<tr>
<td>CXR</td>
<td>chest x-ray</td>
</tr>
<tr>
<td>CVP</td>
<td>central venous pressure</td>
</tr>
<tr>
<td>DGF</td>
<td>delayed graft function</td>
</tr>
<tr>
<td>DVT</td>
<td>deep vein thrombosis</td>
</tr>
<tr>
<td>EMR</td>
<td>electronic medical records system</td>
</tr>
<tr>
<td>HepB</td>
<td>hepatitis B</td>
</tr>
<tr>
<td>HepC</td>
<td>hepatitis C</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HLA</td>
<td>human leucocyte antigen</td>
</tr>
<tr>
<td>HSV</td>
<td>herpes simplex virus</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>INR</td>
<td>international normalised ratio</td>
</tr>
<tr>
<td>LFT</td>
<td>liver function test</td>
</tr>
<tr>
<td>MDT</td>
<td>multi disciplinary team</td>
</tr>
<tr>
<td>MRSA</td>
<td>methicillin resistant staphylococcus aureus</td>
</tr>
<tr>
<td>MMF</td>
<td>mycophenolate mofetil</td>
</tr>
<tr>
<td>PE</td>
<td>pulmonary embolus</td>
</tr>
<tr>
<td>PO</td>
<td>by mouth</td>
</tr>
<tr>
<td>PTASR</td>
<td>post-transplant antibody screen routine</td>
</tr>
<tr>
<td>TB</td>
<td>tuberculosis</td>
</tr>
<tr>
<td>USS</td>
<td>ultra sound scan</td>
</tr>
<tr>
<td>VZV</td>
<td>varicella zoster virus</td>
</tr>
</tbody>
</table>
4 Main text and recommendations

See the following document.

5 Monitoring compliance with and the effectiveness of the guideline

The care of patients with renal transplants, and whether or not this is following the agreed guidelines, is routinely reviewed at the quarterly East Coast Renal Services (ECRS) meeting.

Equality and diversity statement

This document complies with the Prince of Wales service equality and diversity statement.

Disclaimer

It is your responsibility to check against the electronic library that this printed out copy is the most recent issue of this document.

Document management

<table>
<thead>
<tr>
<th>Approval:</th>
<th>Renal Transplant Group - April 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owning department:</td>
<td>Renal services</td>
</tr>
<tr>
<td>Author(s):</td>
<td>Paolo Ferrari</td>
</tr>
<tr>
<td>File name:</td>
<td>POW Renal Transplant Handbook version 3, April 2016.doc</td>
</tr>
<tr>
<td>Supersedes:</td>
<td>TBA</td>
</tr>
<tr>
<td>Version number:</td>
<td>1.0</td>
</tr>
<tr>
<td>Local reference:</td>
<td></td>
</tr>
<tr>
<td>Review date:</td>
<td>April 2018</td>
</tr>
<tr>
<td>Media ID:</td>
<td></td>
</tr>
</tbody>
</table>
Contents
1 Scope ... 1
2 Purpose .. 1
3 Abbreviations ... 1
4 Main text and recommendations ... 2
5 Monitoring compliance with and the effectiveness of the guideline... 2
1 General information ... 6
 1.1 Day-to-day procedures and policies .. 6
 1.1.1 Problems .. 6
 1.1.2 Transplant patients on Parkes 9W .. 6
 1.1.3 MRSA ... 6
 1.1.4 Phone calls ... 6
 1.1.5 Research protocols ... 6
2 Pre-operative admission and assessment for JMO 7
 2.1 Fitness for transplantation .. 7
 2.2 Routine clerking .. 7
 2.3 Routine tests .. 7
 2.4 Is dialysis required? .. 7
 2.5 Consent .. 8
 2.6 Antibiotic prophylaxis ... 8
 2.7 Antithrombotic medication ... 8
 2.8 Patients on warfarin .. 8
 2.9 Initial Immunosuppression (see section 3) 9
 2.10 Vascular access .. 9
 2.11 If the transplant doesn’t happen .. 9
3 Immunosuppression .. 10
 3.1 Immunosuppressive protocols (see appendix 2): 10
 3.1.1 Low immunologic risk patients ... 11
 3.1.2 Intermediate immunologic risk patients 11
 3.1.3 Very high immunologic risk patients 12
 3.1.4 Special circumstances: steroid-free immunosuppression 12
4 Immediate post-operative management ... 14
 4.1 Management in recovery ... 14
 4.2 Hyperkalaemia ... 15
 4.2.1 Management of hyperkalaemia (K+ >6mmol/L) 15
 4.2.2 Monitoring of K+ .. 15
 4.3 Organising dialysis .. 15
 4.4 Analgesia .. 16
 4.5 Fluids .. 16
 4.5.1 Crystalloid ... 16
 4.5.2 Colloid ... 17
 4.6 Urine output .. 17
 4.6.1 High urine output (polyuria) ... 17
 4.6.2 Sudden decline in urine output .. 18
 4.6.3 Delayed graft function (DGF) ... 18
 4.6.4 Resolution of DGF ... 18
 4.6.5 Patients unable to take oral medications 19
 4.7 Prophylaxis/ prevention of complications 19
 4.7.1 Transplant renal vein thrombosis and DVT prophylaxis 19
 4.7.2 Gastric mucosal protection .. 19
 4.7.3 Pneumocystis and fungal infection 19
 4.7.4 CMV infection ... 20
 4.7.5 Tuberculosis (TB) ... 20
Appendix 1: Patient not transplanted

Appendix 3: Drug interactions

Azathioprine
Tacrolimus (also Cyclosporine and sirolimus)
Mycophenolate mofetil (MMF)
Cyclosporine
Methylprednisolone
Lymphocoele
Thymoglobulin (anti-thymocyte globulin)
Urgent Doppler Ultrasound examination
Routine post-operative ward management - Continuing
Blood tests
Imaging - ultrasound
Imaging – nuclear medicine studies
Ureteric stents
Drains, lines, catheters
Surgical drain
CVP line
Permacath
Urinary catheter
Adjustment of immunosuppression dose
Tacrolimus
Cyclosporine
mTOR inhibitors (Sirolimus and Everolimus)
Mycophenolate mofetil (MMF)
Azathioprine
Investigation of graft dysfunction
Urgent Doppler Ultrasound examination
Transplant biopsy
Before procedure
After procedure
Treatment of graft rejection
Methylprednisolone
Thymoglobulin (anti-thymocyte globulin)
Oral immunosuppression in addition to Thymoglobulin
Prophylaxis against infection in addition to Thymoglobulin
Investigation / treatment of suspected CMV infection
Prevention
Investigation
Treatment
Valganciclovir
Ganciclovir
Immunosuppression
Ganciclovir resistance
Concurrent antimicrobial prophylaxis
Record and note keeping
Patient discharge
Death of a patient
Living donors
Before surgery
After surgery
The recipient
Living donor coordinators
Haemodialysis
Routine haemodialysis
'Emergency' haemodialysis
Appendix 1: Patient not transplanted
Appendix 2: Standard immunosuppression protocol
Appendix 3: Drug interactions

Prince of Wales Hospital, South Eastern Sydney
POW Renal Transplant Handbook
Version 1.0; Approved xx 2016
Appendix 4: ABO blood group incompatible transplants 42
Appendix 5: Administration of thymoglobulin 50
Appendix 6: Acute antibody-mediated rejection (ABMR) 53
Appendix 7: Management of BK virus infection 57
Appendix 8: Outpatient management .. 61
Appendix 9: Discharge letter template ... 63
Appendix 10: Screening for New Onset Diabetes after Transplantation (NODAT) ... 65
1 General information

1.1 Day-to-day procedures and policies

1.1.1 Problems
Problems arising in renal transplant patients should be directed to the renal registrar or transplant surgical fellow as appropriate. If you can’t get hold of a registrar, contact the nephrologist or transplant surgeon on call.

1.1.2 Transplant patients on Parkes 9W

The following patients are eligible for admission in order of priority:
1. Patients immediately post-transplant
2. Other transplant patients who do not need specialised care such as CCU, ICU etc.

The day-to-day management of renal transplant patients on 9W is the responsibility of the advanced nephrology trainee and nephrology resident.

1.1.3 MRSA

Patients who are known to be MRSA positive should be admitted to a single room on ward P9W. If no single room is available, then the situation should be discussed with the infection control team (contact via switchboard), but - unless the patient is deemed to be at very high risk - admission to an ‘open’ bed on P9W will usually be allowed.

Staff handling (touching) patients with MRSA or at risk of MRSA (screen not yet known to be negative) should wear gloves and plastic aprons, wash their hands, and use alcoholic chlorhexidine for hand hygiene according to Trust guidelines.

1.1.4 Phone calls

Patients may phone P9W or the transplant junior doctors via the switchboard at any time. Please discuss all such calls with senior staff (medical or surgical, registrar or consultant, as appropriate). In those recently transplanted (within the first three months) there should be a very low threshold for getting patients to come to the clinic. Patients should not be asked to come directly to the ward – if it seems likely that an urgent admission will be required the patient should be directed to the emergency department.

GPs/ doctors in other hospitals may phone P9W or the nephrology registrar about a renal transplant patient at any time. If you are unsure, take details and contact senior staff (medical or surgical registrar or consultant, as appropriate).

Any advice given to patients or to other doctors by telephone should be logged as a telephone summary on the patient’s medical record or electronic medical records system (EMR).

1.1.5 Research protocols

These are an important part of the transplant unit’s work. All staff are expected to help and assist with these when required to do so.
2 Pre-operative admission and assessment for JMO

2.1 Fitness for transplantation

Inform consultant on-call as soon as you have clerked in and taken the necessary bloods from any patient admitted with the intention of transplantation. This is particularly important if you have any doubts about their fitness to undergo the procedure, or should the patient require dialysis.

2.2 Routine clerking

Complete the renal transplant admission but before taking a history and examining the patient, ensure all bloods have been taken (as detailed below) and have arrived in the lab.

Give particular attention to:
- Potassium (see below), and baseline creatinine if pre-dialysis
- Native urine output
- Human leucocyte antigen (HLA) match and cytomegalovirus (CMV) status of recipient and donor – this information will be communicated by the transplant co-ordinator to the on-call nephrologist
- Any symptoms indicating new or worsening cardiovascular disease or of infection.

2.3 Routine tests

- Urgent pre-operative blood tests: biochemical profile including electrolytes + bicarbonate (UEC), liver function test (LFT), full blood count (FBC), CRP and glucose (marked as urgent)
- Cross-match 2 units (more if Hb<80 g/l, bleeding tendency or on warfarin)
- 30 ml citrated blood (three large green tubes) and 10 ml serum (one large white tube) to tissue typing.
- ECG
- Chest x-ray (CXR) (only if clinically indicated)
 o **Note:** CXR will be done in recovery to assess CVC line position
- Research samples if required – see separate protocols.

2.4 Is dialysis required?

- All patients should have a potassium of <5.5mmol/L at the time of transplantation
- If there is a high probability of delayed graft function (DCD kidney), patients should have a potassium of <5.0mmol/L at the time of transplantation.
- There is often considerable delay between admission and transplantation, allowing K^+ to rise above the admission value! **Haemodialysis patients with $K^+ >5.0$mmol/L should receive dialysis.**
2.5 Consent

For transplantation, and for involvement in any research protocols (latter will be obtained by senior member of staff). The consent form for transplantation is normally completed in advance and filed in the patient’s notes. This needs to be countersigned by the admitting doctor to confirm validity.

2.6 Antibiotic prophylaxis

Prescribe: Cephazolin 2g IV at induction and eight hours later.

Note: For penicillin allergic patients prescribe Vancomycin 1g IV + Ciprofloxacin 400mg IV to be given at induction only.

2.7 Antithrombotic medication

Prescribe: Heparin 5000U SC BD, starting post-op.

Note: Patients at high risk of thromboembolism, eg previous history of recurrent deep vein thrombosis (DVT) or pulmonary embolus (PE), are given heparin infusion 20,000U/24h IV.

Note: Monitoring of activated partial thromboplastin time (aPTT) should be done daily.

Note: Stop aspirin while patients are on heparin.

Note: Current clopidogrel treatment is a contra-indication to proceeding with surgery, patients on clopidogrel should be made “interim”.

Note: Newer anticoagulants (“NOACs”) should not used in patients with end-stage kidney disease.

2.8 Patients on warfarin

Patients who are therapeutically anticoagulated with warfarin should, in general, have this reversed before transplantation:

- **On admission check international normalised ratio (INR) urgently**
- Before doing anything else speak to a senior surgeon – if there is a very high risk of graft thrombosis some may wish not to reverse warfarin.
- However, in most patients:
 - **If INR >1.5 administer vitamin K 2mg** intravenously (IV). In the majority, anticoagulation will be effectively reversed within six hours, and further blood products will not be required.
 - Repeat INR around one hour prior to surgery.
 - If the INR remains >1.5 then organise prothrombin complex (Prothrombinex) to be administered following the induction of anaesthesia as follows:
 - INR 1.5-2.9 give 15 U/kg Prothrombinex
 - INR >2.9 give 30 U/kg Prothrombinex
 - **Following surgery repeat INR.** The half-life of vitamin K-dependent clotting factors is less than that of warfarin, and some ‘rebound’ of INR may occur
 - If INR post-surgery is <2 then begin heparin infusion 20000U/24h.
• Warfarin may be restarted once the patient has stable graft function and it is clear that there is no immediate need to perform a biopsy. Remember to continue heparin until INR is therapeutic.

2.9 **Initial Immunosuppression (see section 3)**

Depending upon immunosuppressive regimen **prescribe:**
- Mycophenolate mofetil (1000 mg), to be given PO with premedication,
- Methylprednisolone 500 mg IV (in 50ml saline over 15 minutes) to be given in operating theatre with induction.

2.10 **Vascular access**

Patients receiving a renal transplant may be on haemodialysis, peritoneal dialysis or pre-dialysis (sufficient native renal function not to require regular dialysis). Following transplantation (especially deceased donor transplantation) many patients require acute dialysis (for example to correct dangerous hyperkalaemia).

- For **haemodialysis patients** with a functioning **fistula or graft** then the anaesthetist will insert a standard triple-lumen central line.
- For **haemodialysis patients** using a **tunnelled dialysis catheter** an additional triple lumen central line should be inserted - the dialysis catheter will likely be required for dialysis. An exception could be uncomplicated live donor transplantation, where there is a reasonable expectation of primary graft function, and the dialysis catheter used temporarily for central venous pressure (CVP) measurements.

2.11 **If the transplant doesn’t happen**

If a patient is admitted to the ward for renal transplantation, and this does not go ahead (for instance because it is found that there are problems with the cross-match, or there are other difficulties) please inform senior medical cover without undue delay. Referring nephrologists and other hospitals are placed in a difficult and embarrassing position if their patients are sent home and they don’t know why. The patients or their relatives are almost invariably on the doorstep the next morning!

Appendix 1 is a simple form to be filled in and faxed immediately to the referring unit, explaining why transplantation was not performed. A copy should be given to the patient.
3 Immunosuppression

The majority of patients receive the same initial immunosuppressive regimen. Subsequent modification may be appropriate depending on the post-transplant course, and it is important to document the following markers of immunologic risk:

- HLA match at HLA-A, B and DR (the transplant co-ordinator will tell you)
- Is the patient non-sensitized, sensitized or highly-sensitized (determined by screening for HLA antibodies).
- Is this a first transplant, or has the patient received previous transplants?
- Was a previous transplant lost to acute rejection?

3.1 Immunosuppressive protocols (see appendix 2):

The determination and definition of individual immunological risk will generally depend on a combination of recipient-specific and donor-specific factors (prior transplant, degree of sensitisation, presence of DSA to matched donor, HLA mismatch, eplet mismatch, etc...).

The origin (cold ischaemia time) and type of donor (DBD/DCD) are strong predictors of DGF. DGF remains an important risk factor for biopsy-proven rejection even in a contemporary cohort of kidney transplant recipients and thus immunologic risk.

Very high immunologic risk patients are those who have been identified as being at especially high immunologic risk because of their immunological profile, something that will have been discussed at the time of assessment and at the transplant MDT.

There are 3 baseline immunosuppressive protocols, which differ in the target blood Tacrolimus level and prednisolone dose as well as the agent used for induction therapy:

1. Protocol for low immunologic risk (3.1.1)
2. Protocol for intermediate immunologic risk (3.1.2)
3. Protocol for very high immunologic risk (3.1.3)
4. Protocol for steroid-free immunosuppression (3.1.4)

All of the immunosuppression protocols currently used are Tacrolimus-based.

There may be occasions where Cyclosporine is used in place of Tacrolimus, usually in patients previously intolerant of tacrolimus or who develop intolerable Tacrolimus-related side-effects, or patients at high-risk of post-transplant diabetes (impaired OGTT pre-transplant).

Cyclosporine is prescribed as Neoral at 7mg/kg, divided into two doses. See appendix 6 for target levels of Cyclosporine (measured 2 hours post morninging dose – “C2”).

Protocols for the use of other agents eg. cyclosporine/sirolimus/everolimus are not part of the standard immunosuppressive regimen, but may be part of a trial protocol. In those instances, the eligibility of the patient and the target blood drug levels will be determined by the study protocol.
3.1.1 Low immunologic risk patients

Initial immunosuppression for low immunologic risk patients

Day 0 (day of transplant)
Basiliximab (Simulect) 20mg dissolved in 5 ml water for injection and then made up to 50 ml with 0.9% saline and given as infusion over 30 minutes.
1st dose: prior to transplant (or within 12 hours of return to ward).
2nd dose: Day 4

From Day 1
- Tacrolimus (Prograf) 0.15mg/kg/d PO BD (08.00 and 20.00).
 - Target level 6-10 µg/L.
- Mycophenolate mofetil 1000mg PO BD.
- Prednisolone 30mg PO OD (08.00)

Alternative to Mycophenolate: Azathioprine 2mg/kg PO OD (08.00). Maximum dose 200mg.

3.1.2 Intermediate immunologic risk patients

These patients should be prescribed a more intensive protocol than the standard protocol (ask the consultant in charge):

- The patient is highly-sensitised and/or
- The kidney is a poor HLA match (2DR mismatches, or 2B and 1DR mismatch) and/or
- There is a low level DSA (<2000MFI) with negative crossmatch (including flow in live donors)

Under these circumstances modify the protocol as follows, or consider thymoglobulin induction (see 3.1.3).

Initial immunosuppression for intermediate immunologic risk patients

Day 0 (day of transplant)
Basiliximab (Simulect) 20mg dissolved in 5 ml water for injection and then made up to 50 ml with 0.9% saline and given as infusion over 30 minutes.
1st dose: prior to transplant (or within 12 hours of return to ward).
2nd dose: Day 4

From Day 1
- Tacrolimus (Prograf) 0.15mg/kg/d PO BD (08.00 and 20.00).
 - Target level 8-14 µg/L.
- Mycophenolate mofetil 1000mg PO BD.
- Prednisolone 30mg PO OD (08.00)
3.1.3 Very high immunologic risk patients

Some patients will be identified as being at especially high immunologic risk, something that will have been discussed at the time of assessment and at the transplant MDT. These patients are also given induction therapy with Thymoglobulin, but in addition receive maintenance steroids.

This same protocol may be used for patients with
- weak donor-reactive HLA antibodies (peak > current) not requiring antibody-removal, or for those with
- an unexpected positive B-cell cross-match in whom it is considered reasonable to proceed with transplantation (usually not available however till following day)

<table>
<thead>
<tr>
<th>Initial immunosuppression for high immunologic risk patients</th>
</tr>
</thead>
</table>
| **Day 0 (day of transplant)**
 Methylprednisolone 10mg/kg IV at graft reperfusion as normal (section 2.9), followed by:
 Chlorpheniramine 10mg IV
 Thymoglobulin 1.5mg/kg IV either in theatre under GA or on return to the ward
 Thymoglobulin 1.0-1.5mg/kg IV for 3-5 days |
| **From Day 1**
 • Tacrolimus (Prograf) 0.15mg/kg/d PO BD (08.00 and 20.00).
 - Target level 8-14 µg/L.
 • Mycophenolate mofetil 1000mg PO BD.
 • Prednisolone 30mg PO OD (08.00) |

3.1.4 Special circumstances: steroid-free immunosuppression

Steroid-free immunosuppression may be used for some patients, including those with:

- a 6/6 antigen match,
- history of substantial steroid exposure who are now off steroids,
- high risk of developing severe steroid-related side-effects (e.g. history of considerable weight gain or psychosis).

The decision to use steroid-free immunosuppression will have been discussed with the patient at the time of assessment, and at the transplant MDT, and will be recorded in the patient’s notes, on the transplant database, and in the information provided by the transplant co-ordinator.

Steroid-free immunosuppression is associated with an excess risk of early acute rejection, and for this reason patients may receive induction with a lymphocyte-depleting antibody (Thymoglobulin) followed by tacrolimus and MMF maintenance therapy.
Thymoglobulin administration often leads to significant leucopaenia, so the maintenance MMF dose is lower (500 mg BD) than for basiliximab-treated patients.

Steroid-free immunosuppression

Day 0 (day of transplant)
Methylprednisolone 10mg/kg IV at graft reperfusion as normal (section 2.9), Chlorpheniramine 10mg IV, Thymoglobulin 1.0-1.5mg/kg IV for 3-5 days

From Day 1
Tacrolimus (Prograf) 0.15mg/kg/d PO BD (08.00 and 20.00). Target level 8-12 µg/L. Mycophenolate mofetil 500mg PO BD (08.00 and 18.00).
4 Immediate post-operative management

Following the completion of surgery and anaesthesia patients are transferred to the recovery area, where they may remain for several hours. They are then transferred to a bed on the transplant ward (P9W). It is important that the patient is assessed in recovery, especially with regard to the need for dialysis.

Undetected hyperkalaemia is the greatest danger in all post-operative renal patients. K^+ should be checked in recovery, immediately on arrival to ward, and again six hours later (or at least every 2 hours if $K^+ > 6.0$ mmol/L) (see section 3.2).

A high serum potassium (> 6.0 mmol/L) should always be discussed without delay with the renal registrar and may require urgent haemodialysis unless the patient has primary graft function, in which case it may be reasonable to observe and repeat the measurement in two hours (see below).

4.1 Management in recovery

The patient should be reviewed in recovery by the nephrology registrar, with particular reference to the following:

- **The purpose of this assessment is to determine if the patient is likely to need urgent dialysis, and that they are well enough to return to P9W to receive treatment.**
 - Is the patient hyperkalaemic (see also 3.2 below)?
 - Check K^+ performed on venous blood sample. Check that UEC and FBC have been sent to laboratory
 - Has the patient received medical management for hyperkalaemia whilst in the operating department (insulin + dextrose or salbutamol)? This information is recorded on the anaesthetic chart, and should also be communicated by the anaesthetist

- **Arrange chest X-ray and assess that tip of CVC line is correctly positioned**

- **Is there evidence of primary graft function (urine output >100ml/hour unless high native UO)?**
 - Check that blood pressure (BP), CVP and fluid replacement are adequate

- **If the patient does not have primary graft function and**
 - $K^+ > 6.0$ mmol/L or
 - has already received medical management for ↑ K^+ then plan dialysis.

- **If you are concerned that the patient is too unstable to receive dialysis contact ICU (invasive monitoring and haemofiltration may be required) and the surgeon responsible for the patient.**

- **Check that the surgical drains are not filling quickly**
 - The transplant fellow will contact the nephrology transplant registrar to agree a plan for further management.
4.2 Hyperkalaemia

4.2.1 Management of hyperkalaemia (K⁺ >6mmol/L)

- Obtain a 12-lead ECG to identify signs of cardiac instability (peaked T waves and broad QRS complexes).
- If there is evidence of cardiac instability give 10 ml 10% calcium gluconate IV over 5 minutes. Repeated after 5 minutes if needed.
- **Contact the renal registrar to discuss urgent dialysis**
- In most patients the ECG will be unremarkable. Management then depends on the presence of graft function:
 - If the patient has primary graft function as indicated by urine output >100 ml/hour (unless high native urine output) then repeat K⁺ one and two hours later. If persistently >6.0 mmol/L consider dialysis.
 - If there is no or little primary function then it is unlikely that there will be a sustained fall in K⁺, and the patient should be dialysed without delay.
 - Insulin and dextrose (10 units actrapid insulin in 50 ml 50% dextrose given IV over 15 minutes into a large vein) will reduce serum K⁺ by about 1 mmol/L for four hours if urgent treatment is required whilst waiting for dialysis.
 - If a patient does receive insulin and dextrose, **blood glucose should be checked** hourly for four hours following the infusion.
 - **Do not give Sodium polystyrene sulphonate (Resonium A)** – the efficacy when given orally in acute hyperkalaemia is negligible. Resonium A could be considered in patients with > 100ml/hour urinary output.

4.2.2 Monitoring of K⁺

- During surgery K⁺ should be measured frequently by the anaesthetist using ‘venous blood gas’ samples. Note these results.
- K⁺ should be measured following completion of surgery, once the patient arrives in recovery.
- If the patient has received ‘medical management’ for ↑ K⁺, then there is likely to be a rapid rebound of serum K⁺ and measurements repeated every 1-2 hours. If there is no primary graft function then the patient will require dialysis unless all K⁺ measurements are <5.5mmol/L and not rising (see above).
- For other patients measure K⁺ again on transfer to the ward, and if <5.5mmol/L repeat six hours later.

4.3 Organising dialysis

- discuss with nephrology consultant on call first
- If dialysis is required on P9W then the nurse in charge is responsible for coordinating such requests (applies 0700 – 1900 Monday to Saturday).
- Outside of these hours contact the on-call haemodialysis nurse through switchboard
4.4 Analgesia

All transplant patients will be offered PCA, provided there is no contraindication and a pump is available. Fentanyl is prescribed by the anaesthetist, with follow-up post op by the acute pain service.

Prescribe:
Fentanyl 500µg in 50 ml N/saline (concentration: 10 µg/ml).

In additional all patients should receive regular paracetamol 1g PO QDS (may be given IV if required).
Note: Laxatives should be charted along with opioids to prevent constipation (e.g. Coloxyl BD).

4.5 Fluids

Immediately after transplantation the kidney is vulnerable to hypoperfusion injury. In the early post-operative period it is important to make vigorous efforts to ‘optimise renal perfusion’.

In practice this means:

- **Maintaining UO:** Replacing fluid losses with IV crystalloid
- **Maintaining BP:** usually achieved with adequate filling (CVP)
 Note: In the acute setting a mildly elevated blood pressure (SBP <180mmHg) is acceptable because blood flow through the transplanted kidney is dependent on mean systemic BP.
- **Maintaining CVP:** as above (occasionally IV colloid or blood)

4.5.1 Crystalloid

The rate of urine output after transplantation is very variable.
- Patients may be oliguric if they produce little urine from their native kidneys and the graft suffers from acute tubular necrosis (ATN).
- By contrast, they may be polyuric, passing >10 litres per day.

Urine output (and nasogastric fluid losses) should be replaced by replacement fluid using half-normal saline, because the urine sodium concentration passed immediately after transplantation is usually in the range 50-80 mmol/L.

The standard regime for crystalloid infusion should be:

Prescribe:
0.9% NaCl (available in 1L bags) at a rate equal to the previous hours fluid output + 20 ml

If UO is >200ml/hr: give 100ml + ½ ml per each ml >200ml/hr (i.e. UO =300ml/hr, infusion rate = 150ml/hr).
If UO is <50ml/hr:
- BP low, CVP low: increase fluids/fluid boluses of 200 – 500mls
- BP low, CVP high: consider catecholamines (dopamine)

4.5.2 Colloid

The CVP is measured from the midaxillary line, with the patient supine. It should not be pushed above 12 cm in an attempt to ‘make the kidney work better’ - pulmonary oedema is a more likely eventuality!

Prescribe:
0.9% NaCl 500ml and 100ml 20% albumin, to keep CVP 8-10 cm
Use blood sparingly if anaemia (Hb <70g/l or symptomatic), operative blood loss, or blood loss from drains is excessive.

Most patients return from theatre with a temporary 3-lumen central venous catheter, used for measuring CVP, performing initial blood tests and administration of fluids. Some patients with tunnelled 2-lumen dialysis catheters do not have an additional central line placed, with one lumen used intra-operatively for CVP measurement and blood tests. It is reasonable to continue CVP monitoring in this way for up to 24 hours post-transplant, but great care should be taken to maintain sterility and to ‘lock’ the line correctly.

4.6 Urine output

4.6.1 High urine output (polyuria)

Following transplantation some patients are polyuric (arbitrarily >200 ml/hr). In these cases prolonged administration of the standard fluid regime is inappropriate: (a) it will be difficult (and not desirable) to get the CVP up to 8-10 cm, and (b) it will encourage massive urine output, leading to potentially dangerous electrolyte disorder, especially hypokalaemia.

If urine output is >200 ml/hr:
(a) Use the standard fluid regime (above) for the first 24 hours post-transplant then
(b) Reduce crystalloid input to equal total fluid output, thus ensuring gentle negative balance through insensible losses and avoiding ’tail chasing’, whereby the patient passes a very large volume of urine and is rewarded by having even more fluid infused!
(c) Some patients may require potassium with replacement crystalloid (40 mmol/L). Check serum potassium at least twice daily [more frequently if urine output is massive] and add potassium if $K^+ <4.0\text{mmol}/L$.
(d) If patient is recieving colloid infusion, stop and allow CVP to ‘settle’ <8cm.
4.6.2 Sudden decline in urine output

If urine output stops check that the catheter is not blocked by:

- Performing a bladder scan
- If necessary gently flushing the catheter with 50 ml of saline to dislodge any blockage

Usually the catheter is not blocked, and if a patient becomes abruptly anuric contact surgical Registrar (or consultant) immediately (acute vascular occlusion may sometimes be recoverable if dealt with rapidly). An urgent ultra sound scan (USS) or Doppler is likely to be required. Continue to prescribe fluids as per protocol.

4.6.3 Delayed graft function (DGF)

This is defined as either the requirement for dialysis after the transplant (unless solely to manage hyperkalaemia in a patient with a falling creatinine), or oliguria (urine output <50 ml/hour) with failure of the serum creatinine to fall spontaneously.

DGF does usually not require any alteration to immunosuppression unless the patient is at high immunologic risk (see above).

If DGF is prolonged, or there is evidence of tacrolimus nephrotoxicity on a transplant biopsy, or there are markers of increased immunologic risk then immunosuppression may be modified as below (although there is little evidence to support this approach):

Modify maintenance oral immunosuppression as follows

<table>
<thead>
<tr>
<th>Reduce</th>
<th>Prograf to 0.1mg/kg/d PO BD (08.00 and 20.00). Target trough level 5-8µg/L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue</td>
<td>Mycophenolate mofetil PO BD (08.00 and 18.00)</td>
</tr>
<tr>
<td>Continue</td>
<td>Prednisolone 30mg PO OD (08.00)</td>
</tr>
</tbody>
</table>

The evidence for a short-course of low-dose Thymoglobulin (1.0mg/kg IV for 2-3 days) practice is questionable, especially considering the increased risk of bacterial and non-CMV infections in thymoglobulin and risk of subsequent BKV infection in thymoglobulin treated pateints with DGF. Most centres across the world do not use thymoglobulin for this purpose unless there is a specific immunologic reason.

4.6.4 Resolution of DGF

Once the transplant begins to function and the serum creatinine is falling spontaneously, then the tacrolimus dose should be increased to achieve a target trough level of 6-10µg/L.
4.6.5 Patients unable to take oral medications

Following renal transplantation it is very unusual for patients to be intolerant of PO medications. If parenteral administration is required then the following is a guide. For details consult the pharmacist.

- **Tacrolimus.** Starting dose is 0.05mg/kg as an IV infusion over 24 hours.
- **Prednisolone.** Substitute with IV hydrocortisone, usually 50mg BD (1 mg prednisolone is roughly equivalent to 4mg hydrocortisone).
- **MMF.** IV dose is the same as PO dose, infused over 2 hours.

4.7 Prophylaxis/ prevention of complications

4.7.1 Transplant renal vein thrombosis and DVT prophylaxis

<table>
<thead>
<tr>
<th>Prescribe (for all patients):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heparin 5000U SC BD. No subsequent aPTT monitoring is required</td>
</tr>
</tbody>
</table>

4.7.2 Gastric mucosal protection

<table>
<thead>
<tr>
<th>Prescribe (for all patients):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranitidine 150 mg PO BD</td>
</tr>
<tr>
<td>If ranitidine is contraindicated - use Omeprazole 20 mg PO OD</td>
</tr>
</tbody>
</table>

4.7.3 Pneumocystis and fungal infection

<table>
<thead>
<tr>
<th>Prescribe (for all patients):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotrimoxazole (septrin) 800/160mg PO Mon, Wed, Fri at 08.00</td>
</tr>
</tbody>
</table>

If a patient is **allergic to cotrimoxazole** then it is still important that they receive prophylaxis against pneumocystis for the first twelve months.

The alternatives are:
1. Pentamidine isethionate 300 mg should be administered by inhalation once every four weeks, which requires premedication with nebulised salbutamol to prevent bronchospasm or
2. Dapsone 100mg daily po

<table>
<thead>
<tr>
<th>Prescribe (for all patients):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nystatin suspension 100,000 U (1 ml) PO QDS</td>
</tr>
</tbody>
</table>

Candidiasis of the oropharynx (and urinary tract) is very common shortly after transplant.

If a patient has received induction immunosuppression with a T-cell depleting antibody (thymoglobulin) the increased risk of bacterial and fungal infections is managed best by careful observation, minimisation of environmental exposures, and early evaluation and treatment if symptoms occur.
4.7.4 CMV infection

All patients at risk of CMV infection should receive prophylaxis with oral valganciclovir. Accordingly, prophylaxis should be given if either the donor or the recipient is CMV IgG seropositive (D+ or R+) irrespective of the immunosuppression used. The dose of valganciclovir depends on the calculated creatinine clearance (using the Cockcroft-Gault formula).

Prescribe (for any D+ or R+ transplant):
Valganciclovir PO in dose appropriate to renal function

<table>
<thead>
<tr>
<th>Cockcroft Gault creatinine clearance (ml/min)</th>
<th>Valganciclovir prophylactic dose (all PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 60</td>
<td>900 mg OD</td>
</tr>
<tr>
<td>40 – 59</td>
<td>450 mg OD</td>
</tr>
<tr>
<td>25 – 39</td>
<td>450 mg every 2 days</td>
</tr>
<tr>
<td><25</td>
<td>450 mg twice weekly</td>
</tr>
</tbody>
</table>

All high-risk patients (D+, R-) receive valganciclovir for six months, at risk patients (R+) receive valganciclovir for three months:

<table>
<thead>
<tr>
<th>Donor / recipient serology</th>
<th>Duration of Valganciclovir prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D+ R-</td>
<td>6 months</td>
</tr>
<tr>
<td>D+ R+</td>
<td>3 months*</td>
</tr>
<tr>
<td>D- R+</td>
<td>3 months*</td>
</tr>
<tr>
<td>D- R-</td>
<td>none</td>
</tr>
</tbody>
</table>

* 6 months in any recipient D+ or R+ treated with ATG

4.7.5 Tuberculosis (TB)

All patients being assessed for transplant will have a Mantoux test with referral to the tuberculosis clinic for those who are positive. Usual prophylaxis is isoniazid for nine months.

4.8 The ‘standard prescription’

Most ‘dialysis/renal medications’ including erythropoetin, phosphate binders (eg calcichew, Renagel (sevelamer) or lanthanum) and ferrous sulphate, should routinely be stopped. Aspirin should be stopped whilst patients are on enoxaparin. However, vitamin D preparations should be continued.

Written on the standard drug chart, should have the regular immunosuppression clearly recorded to allow for daily alteration of dosing. This specifies a minimum of:
• Immunosuppression as described in section 3.1.
 Ensure both doses of basiliximab are prescribed.
• Cotrimoxazole (Septrin) 800/160mg PO OD on Mon, Wed, Fri only (08.00)
• Nystatin suspension 100,000 units PO QDS
• Ranitidine 150mg PO BD
• Heparin 5000U SC BD
• Valganciclovir – if appropriate
• Antiemetic, analgesia

Anti-hypertensive medications should not be prescribed immediately post-operatively until it is clear that they are required, aside from **beta-blockers, which must not be withdrawn acutely**. Avoid ACE inhibitors and angiotensin receptor blockers early post transplant where calcium channel blockers are preferred.

Other medications should usually be continued: but examine **appendix 3**, which lists important drug interactions with tacrolimus (or Cyclosporine).
5 Routine post-operative ward management - Continuing

5.1 Blood tests

- A typical schedule for recently transplanted patients is shown below. Some additional tests are inevitable (for example, clotting studies before a planned biopsy).
- In the first 24 hours bloods are to be collected at least 12 hourly, or more often if clinically indicated.
- **Trough tacrolimus levels** - taken before morning dose, available Mon to Fri (patients must be educated not to take their tacrolimus before these blood tests). The sample must arrive in the lab before 10am in order to have a result the same day.
- **Serum** – 10 ml to virology and 10 ml to tissue typing (*DSA - post-transplant antibody screen routine) if clinically indicated.

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>UEC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ca, Ph, Mg</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GLU*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LFT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tacrolimus level</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DSA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*Screening for NODAT: see Appendix 10

5.2 Imaging - ultrasound

In the immediate post-operative period imaging is required to assess graft perfusion, identify ureteric obstruction (unusual if ureteric stent in situ), and identify fluid collections adjacent to the transplanted kidney. The preferred imaging modality is ultrasonic scanning and Doppler studies (to assess the transplant artery and vein, and graft perfusion).

All patients require a baseline imaging study performed after the transplant. If there is good primary graft function and no concern over the state of the vascular anastomoses then an ultrasound scan should be performed the morning after the transplant operation.

An urgent ultrasound is required to confirm graft perfusion if there is unexpectedly poor initial graft function, if there is doubt concerning the vascular anastomoses or if there is an abrupt deterioration in graft function.

Scan request should say:
Renal transplant *R or LIF* on date. Baseline scan or clinical indication. Remember to provide **all** relevant information, for example number of transplant arteries, whether or not there is graft function and your page number.

For **urgent scans** contact vascular lab (for Doppler studies) or out-of-hours radiology Registrar on-call via switchboard.
Note – if you think there may be a transplant artery or vein thrombosis then there is only a short time in which the graft may be salvaged. An ‘urgent’ ultrasound in this setting should be immediate, and the consultant surgeon on-call contacted to arrange surgical exploration and revision.

5.3 Imaging – nuclear medicine studies

Routine DTPA or MAG3 scans are not performed. These scans provide information on graft perfusion and radio-isotope excretion (which is a marker of graft function), and may be useful under some circumstances:

- To assess regional perfusion of a transplant supplied by multiple renal arteries
- To identify a urine leak or (later after transplantation, once the ureteric stent has been removed) ureteric obstruction

Scan request should say:
Renal transplant R or LIF on date. Indication for scan – you must give all details, particularly arterial anatomy, whether or not there is graft function and the clinical question you wish answered (eg ‘is lower pole perfused?’ or ‘is there evidence of urine leak?’)

To discuss nuclear medicine imaging contact the department on ext. 22204.

5.4 Ureteric stents

Routine policy is for the ureteric anastomosis to be stented with an internal (double J) stent. This is normally removed at about 4-6 weeks by flexible cystoscopy, the procedure being covered with ciprofloxacin 500 mg PO 1hr beforehand. Contact the transplant surgery registrar if:

- There is an indication to remove the stent early (recurrent UTI or troublesome haematuria)
- A patient has not received an appointment for stent removal by six weeks post-transplant.

5.5 Drains, lines, catheters

5.5.1 Surgical drain

- Usually removed at 48 hr if drainage <100 ml/day.
- Not to be taken out without consent of surgical fellow.
- If there is a large amount of fluid in the drains then send a sample for biochemistry (Na⁺, K⁺ and creatinine) to make sure it is not urine

5.5.2 CVP line

- Usually removed four days post-transplant (after second dose of basiliximab).
- Not to be taken out without consent of renal registrar.
5.5.3 Permacath

- If the transplant is working well a Permacath can be removed 24 hours before discharge if agreed by consultant nephrologist on transplant duty.
- This procedure is performed under local anaesthetic by the renal registrar.
- If transplant function is uncertain, then do not remove the Permacath before discharge: Arrangements should be made for weekly flushing and locking to keep patent (there is no point in leaving a blocked Permacath in situ!). This can be done by nurses on G5 or dialysis as appropriate when the patient attends the Monday or Thursday transplant clinic.

5.5.4 Urinary catheter

- Usually removed on day five, but can be removed as early as day 3 in uncomplicated cases if agreed by the surgeons.
- Not to be taken out without consent of surgical fellow.

5.6 Adjustment of immunosuppression dose

The dose of immunosuppression that each patient receives is considered and adjusted, if necessary. It should not be altered without discussion with the registrar / consultant. The paragraphs below describe the principles and practice employed.

Note that there are important drug interactions with tacrolimus, Cyclosporine and azathioprine to consider - see appendix 3

5.6.1 Tacrolimus

Tacrolimus levels are measured on all ward patients on Mondays to Sundays however sample on Saturdays are not analysed till the next day. SEALS measures Tacrolimus levels by LC-MS/MS, which does not measure inactive metabolites and the levels are 20-50% lower than immunoassays.

Immediately after transplantation we aim to maintain a trough level of 8 µg/L (target range 6 - 10 µg/L) in those receiving the drug orally. In those receiving tacrolimus as a continuous IV infusion (very rarely required) a ‘steady state’ level of 10-15µg/L is appropriate.

The dose is adjusted if the measured value falls outside the target range, but:

- If the reported trough level is very high ensure that the patient did not take their tacrolimus dose before blood was drawn
- Remember that a ‘stable’ trough level is not usually achieved until the patient has been on the same dose for five ‘half-lives’ of the drug (which will be 3 days for Prograf, T½ 16h). Accordingly, there is little point in changing the Prograf dose on consecutive days unless the trough levels are extreme.
- They are many factors that influence tacrolimus levels, including:
 - Use of other drugs that affect tacrolimus metabolism
 - Diet (tacrolimus absorption is higher in starved patients)
 - Diarrhoea (also leads to increased tacrolimus absorption)
 - A low serum albumin increases the proportion of free (active) drug
In stable patients in whom other medications are not being altered there is, in general, a linear relationship between tacrolimus dose and measured trough level. Thus, if you double the Prograf dose you will double the trough level, but it will take two to four days.

Worked example: 80kg patient started off on Prograf 0.15mg/kg/d = 6mg BD. Trough level on post-transplant day five high at 17.5µg/L (target 6-10). Halving the dose to 3mg BD should lead to trough level 8-9µg/L within four days.

5.6.2 Cyclosporine

The principles used for tacrolimus dosing and dose adjustment apply equally to Cyclosporine. At present Neoral is the only Cyclosporine brand used in the hospital, and is prescribed twice daily at 08.00 and 20.00. The usual starting dose is 7 mg/kg in total – thus for a 70kg patient = 490mg = 250mg BD.

Target Cyclosporine levels are measured two hours after the morning dose (“C2”).

5.6.3 mTOR inhibitors (Sirolimus and Everolimus)

Sirolimus and Everolimus are currently not used as part of the standard immunosuppression in patients in the immediate post-transplant period (because of a marked inhibition of wound healing). Clinical trial protocols will generally guide dosage of the mTOR and CNI. Much lower targets for CNI levels (10-20% of the usual target) are required when used with Everolimus or Sirolimus.

Sirolimus is best used without Cyclosporine, as there is a significant interaction, which results in elevated Sirolimus levels particularly when the drugs are co-administered.

Target trough mTOR levels, if used early following transplantation in combination with a CNI are:
- Sirolimus levels are 4-8µg/L
- Everolimus levels are 3-8µg/L

Sirolimus is administered once daily and Everolimus is used twice daily, Sirolimus has a longer half-life (60 hours) than Everolimus (30 hours). This means that the response to any dose adjustment will take several days (Everolimus) and up to a week (Sirolimus) to reach a new steady state.

5.6.4 Mycophenolate mofetil (MMF)

Use of MMF is most commonly limited by gastrointestinal side-effects (especially diarrhoea), which usually respond to dose reduction. In addition MMF is also myelosuppressive, and in general causes more profound lymphopaenia than azathioprine.

For this reason MMF dose adjustments should be based on absolute neutrophil count, not total WBC:
Absolute neutrophil count (x10⁹/mm³)

<table>
<thead>
<tr>
<th>Induction therapy</th>
<th>Basiliximab</th>
<th>Thymoglobulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 2.0</td>
<td>750mg BD</td>
<td>500mg BD</td>
</tr>
<tr>
<td>1.0 – 2.0</td>
<td>250mg BD</td>
<td>250mg BD</td>
</tr>
<tr>
<td>< 1.0</td>
<td>STOP</td>
<td>STOP</td>
</tr>
</tbody>
</table>

5.6.5 Azathioprine

The starting dose of azathioprine is 2 mg/kg, approximated to the nearest 25mg. Do not exceed 200mg. The factor most commonly limiting the dose of azathioprine is dose-related marrow suppression. Note that leukopaenia does not correlate with therapeutic efficacy. If the total WBC is < 4.0, then the dose of azathioprine should be halved (rounded to the nearest 25 mg), and omitted completely if total WBC < 3.0.

Azathioprine must not be used in combination with allopurinol due to the risk of fatal toxicity.
6 Investigation of graft dysfunction

This is the most common cause for concern in immediate post-transplant management. By far the most frequent cause of a graft failing to work initially (urine output from graft < 50 ml/hr at 6 hr, or a rising creatinine) is acute tubular necrosis or ATN, for which there is no specific treatment.

If a graft functions initially, but then deteriorates (manifest by creatinine plateauing or rising), the differential is usually between urinary obstruction, rejection (rare nowadays before day five or six, except in sensitized patients with preformed donor-reactive HLA antibodies), tacrolimus nephrotoxicity and ATN (if there has been an intercurrent haemodynamic stress). Diagnosis therefore requires:

6.1 Urgent Doppler Ultrasound examination

In case of graft dysfunction an urgent Doppler Ultrasound examination will be required to exclude obstruction and confirm blood supply. Contact vascular laboratory (or on-call radiology Registrar if out-of-hours)

Scan request should say:
Renal transplant on date. Rising creatinine. ‘For biopsy if obstruction excluded – is the graft well perfused?’ Make sure you include your contact details.

In theory any request for an urgent transplant USS received from P9W before 10.30 will be done that morning and certainly that afternoon. In practice all cases should be discussed with ultrasound. If there is difficulty in obtaining a USS contact senior medical (registrar / consultant) staff immediately.

6.2 Transplant biopsy

Performed in treatment room on P9W by senior registrar or medical staff.

6.2.1 Before procedure

Ensure platelet count, Hb and clotting have been checked in the preceding 24 hours.
- If platelet count < 80 x 10^9/L, seek haematology advice – the procedure may need to be done under platelet cover.
- Send a G+H sample if Hb 80-90g/L and consider transfusion if <70g/L.
- Clotting should be normal.
- Check BP (should be < 160/90). Anxious, hypertensive patients may respond to a small dose of benzodiazepine (for example temazepam 10mg PO) 60 minutes pre-biopsy

Ensure heparin has been crossed out for the day prior to and the day of the biopsy and written consent has been obtained (usually by the performing clinician).

If a biopsy is considered “urgent” or performed out-of-hours, take the sample to the histolopathology lab. Ensure the consultant histolopathologist on-call is aware of the biopsy so that an urgent preliminary report can be issued.
6.2.2 After procedure

- Bed-rest for six hours
- Routine post-biopsy nursing observations:
 - 1/4 hrly HR & BP for two hours then
 - 1/2 hrly HR & BP for two hours
- Macroscopically examine the urine for haematuria
- An increasing pulse rate, falling BP, macroscopic haematuria or pain over the transplanted kidney post-biopsy should prompt an immediate assessment including blood tests (esp. FBC), volume assessment and consideration of USS to check for developing haematoma.
- **If there are any concerns re the clinical status of a patient post-biopsy, immediately inform the renal Registrar (ideally the one who performed the procedure)**
7 Treatment of graft rejection

7.1 Methylprednisolone

The standard first-line treatment for rejection is high-dose IV steroids:

| Prescribe: Methylprednisolone 500 mg IV OD for three days. This should be diluted in 50 ml of either 0.9% saline or 5% glucose and given over 20-30 minutes |

This can be given through either a peripheral or a central line. Oral steroids should be discontinued for the duration of IV treatment.

Maintenance immunosuppression should be modified (see immunosuppression flowchart). All patients diagnosed with acute rejection should have a 10ml serum sample sent to tissue typing for HLA antibody screen (ARCBS). If antibody-mediated rejection (ABMR) is suspected then contact tissue typing directly to arrange for the test to be performed urgently (ARCBS – call Narelle Watson (02) 9234-2356).

7.2 Thymoglobulin (anti-thymocyte globulin)

The standard treatment for rejection refractory to methylprednisolone, or for an initial episode of severe acute rejection, is to administer a polyclonal T-cell depleting antibody. The preparation routinely used is rabbit anti-human thymocyte globulin (Thymoglobulin).

- Administration of Thymoglobulin needs to be supervised closely. In patients with fluid overload the first dose may rarely precipitate fatal pulmonary oedema (due to cytokine release making lung capillaries leaky).
- The patient must be reviewed by a senior member of staff (registrar / consultant) before Thymoglobulin is given. If pulmonary oedema is present (obtain CXR), it requires treatment, almost certainly by dialysis, before treatment with Thymoglobulin commences.
- The first dose of Thymoglobulin should be administered under close supervision.
- For treatment of acute rejection thymoglobulin should be given for a total of 7-14 days, based on graft function, and severity of rejection as was WBC, platelet and lymphocyte counts (see Appendix 5).
- The treatment dose of Thymoglobulin is 1.5mg/kg.

7.2.1 Oral immunosuppression in addition to Thymoglobulin

- Tacrolimus: It is important that tacrolimus levels are therapeutic before the end of the Thymoglobulin course. The best approach is to maintain tacrolimus treatment with a target trough level of 6-10 µg/L.
- Anti-proliferative drugs (MMF, azathioprine and sirolimus): All of these should be omitted once Thymoglobulin treatment is started. Anti-proliferative drugs should be reintroduced based on platelet and WCC count. Aim to reintroduce anti-proliferatives before the final dose of Thymoglobulin.
- Steroids should be continued, usually 20 mg Prednisolone.
7.2.2 Prophylaxis against infection in addition to Thymoglobin

- **Cotrimoxazole 800/160mg PO** Mon, Wed, Fri (if not already prescribed) continued for six months following treatment.
- **CMV prophylaxis with valganciclovir** if either donor or recipient is CMV IgG seropositive (D+ or R+), for at least three and possibly six months (see section 3.6.5 for dosing).
- **Consider acyclovir prophylaxis** for CMV D-/R- patients (to protect against other herpes virus infections, particularly herpes simplex virus (HSV) and VZV).
- **Nystatin** 100,000 U QDS for 30 days to protect against oral and oesophageal candidiasis.

8 Lymphocele

Lymphoceles are common and if both asymptomatic and not compromising vital structures (eg compressing the transplant ureter leading to obstruction) are best left alone. Such lymphoceles often disappear.

The initial treatment for a **symptomatic** lymphocele is drainage to dryness with a pig-tail catheter inserted under ultrasound guidance. If (when) it recurs, then repeat drainage alone is unlikely to be successful. Recurrent lymphoceles require surgical fenestration.

9 Investigation / treatment of suspected CMV infection

9.1 Prevention

CMV **prophylaxis** with valganciclovir is routinely prescribed to all patients at risk of CMV disease; that is those who are CMV IgG seropositive (R+) indicating past infection with CMV, or who receive an organ from a CMV seropositive donor (D+) (see section 3.7.5). Prophylaxis is given for either three or six months, and again to any patient who receives a lymphocyte-depleting antibody at any time following transplantation.

9.2 Investigation

Renal transplant recipients are susceptible to primary (CMV transmitted with the transplant) or secondary (re-activation) CMV infection. Without the use of prophylaxis, CMV is most commonly diagnosed between four and eight weeks post-transplant. In patients receiving prophylaxis it is most commonly diagnosed 2-10 weeks after valganciclovir is discontinued, and can take a wide variety of forms:

- Asymptomatic CMV viraemia (identified by screening for CMV)
- CMV syndrome (viraemia with fever, flu-like symptoms, arthralgia and often abnormal LFTs and leucopaenia)
- Tissue-invasive CMV disease (pneumonitis, colitis and CMV infection of the transplanted kidney).
The clinical expression of CMV ranges from a trivial febrile illness to a devastating condition with high fever and widespread organ involvement/failure (gut, lung and liver particularly). Most typical is the patient with a fever of 40°C who looks and feels reasonably well.

Testing of patient suspected of having symptomatic CMV infection
(1) PCR from blood (specimen in EDTA, order CMV PCR, for quantitative result).
(2) Tissue to virology for PCR (when affected organ biopsied)
(3) BAL for suspected CMV chest infection

Note - enterovirus, HSV and VZV PCR testing is available for patients with CNS symptoms

9.3 Treatment

In many cases CMV infection is a relatively mild, self-limiting illness, and the patient who feels well, with no evidence of organ involvement (eg normal liver function tests), and a low CMV titre (< 3,000 copies DNA/ml) may simply be observed with weekly CMV monitoring unless they meet criteria for treatment (see below) or counts fall below 300 copies/ml. Consider reduction in the MMF dose, if possible

Treatment should be started if:

Asymptomatic
- PCR >3,000 copies/ml and primary infection (R-), or
- PCR >3,000 copies/ml and a threefold increase on repeat test, or
- PCR >10,000 copies/ml on two consecutive occasions

Symptomatic
- PCR >300 copies/ml

Asymptomatic patients should be treated with treatment-dose oral valganciclovir (see table below) until the CMV PCR < 300 copies/ml for two consecutive weeks, followed by 11 weeks of prophylactic-dose valganciclovir (assuming screening PCRs remain negative).

9.3.1 Valganciclovir

<table>
<thead>
<tr>
<th>Creatinine clearance</th>
<th>Valganciclovir treatment dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>>60</td>
<td>900 mg BD</td>
</tr>
<tr>
<td>40-59</td>
<td>450 mg BD</td>
</tr>
<tr>
<td>25-39</td>
<td>450 mg OD</td>
</tr>
<tr>
<td>10-24</td>
<td>450 mg every two days</td>
</tr>
<tr>
<td><10</td>
<td>No suitable VGC dose</td>
</tr>
<tr>
<td></td>
<td>Use IV ganciclovir</td>
</tr>
</tbody>
</table>

9.3.2 Ganciclovir

Symptomatic patients (or those with tissue-invasive disease) should receive IV ganciclovir, dosed according to CrCl as follows:
Creatinine clearance

<table>
<thead>
<tr>
<th>Creatinine clearance</th>
<th>Ganciclovir treatment dose (Intravenous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>70</td>
<td>5 mg/kg BD</td>
</tr>
<tr>
<td>50-69</td>
<td>2.5 mg/kg BD</td>
</tr>
<tr>
<td>25-49</td>
<td>2.5 mg/kg OD</td>
</tr>
<tr>
<td>10-24</td>
<td>1.25 mg/kg OD</td>
</tr>
<tr>
<td><10</td>
<td>1.25 mg/kg 3x / week (after HD on HD days)</td>
</tr>
</tbody>
</table>

Dilute in 100 ml of 0.9% saline or 5% glucose and give over 1h

Monitor CMV PCR once per week whilst on treatment and switch from IV ganciclovir to oral valganciclovir (prophylactic-dose) when CMV < 300 copies/ml on 2 consecutive occasions. Oral valganciclovir should be continued for a further 11 weeks assuming PCR remains negative.

FBC should also be closely monitored whilst on IV ganciclovir as it can cause a profound pancytopenia. Stop ganciclovir if:

a) Neutrophil count < 0.5 x 10⁹/L, or
b) Platelet count < 25 x 10⁹/L

Following successful treatment, screen for reactivation by CMV PCR once a month till six months post-infection.

9.3.3 Immunosuppression

CMV viraemia is a consequence of immunosuppression. In addition to antiviral therapy, most patients should have immunosuppression reduced:

- **Reduce or stop MMF** – (val)ganciclovir increases bioavailability of MMF
- However, remember that CMV infection actually **increases** the probability of acute rejection, so it is important to:
 - Maintain therapeutic tacrolimus levels
 - Maintain steroid dose. In severely symptomatic patients on maintenance prednisolone (5mg) consider doubling to 10mg

9.3.4 Ganciclovir resistance

Clinical resistance to ganciclovir should be suspected if the CMV count has not fallen by at least one log difference (ie 10-fold) after two weeks of therapy and/or the patient has not improved clinically. In this circumstance:

- Consider (further) reduction in immunosuppression
- Discuss with consultant virologist
- Discuss alternative antiviral agents (foscarnet or cidofovir)
- Consider CMV hyperimmune globulin
- Request test for genotypic resistance (results available in around 10 days)
9.3.5 Concurrent antimicrobial prophylaxis

Patients with CMV viraemia are at increased risk of opportunistic infection. If cotrimoxazole prophylaxis has been discontinued then restart **cotrimoxazole** 800/160mg on Mon, Wed and Fri. for the duration of CMV treatment. Antifungal prophylaxis with fluconazole is usually unnecessary.
10 Record and note keeping

This is vitally important: without records and notes we won’t know what has happened. In addition to regular entries in the hospital notes, the renal transplant junior doctors are responsible for:

- Entering data into the events screen of the renal transplant database
- Updating the summary screen for the weekly audit meeting

Data to be captured includes diagnoses, current drugs, investigations, complications of transplantation and renal transplant biopsy results. Wherever possible the data should be entered using the drop down lists provided and the use of free text should be minimised.

11 Patient discharge

If a renal transplant works well, patients will be discharged on the 7th or 8th post-operative day. The renal transplant registrar should ensure that when patients are discharged from the ward:

- A completed discharge summary and medication prescription is generated. This is a vital document generated through the EMR system. It is essential that the information entered is both accurate and comprehensive.
- A copy of the discharge summary and medication prescription must be sent to the referring hospital and/or nephrologist, when the patient is not a regular POW client.
- A supply of correct medication is prescribed, with clear instructions as to how it should be taken (liase with pharmacist and transplant recipient co-ordinator).
- An appointment is made for the patient to come to the next transplant clinic (usually Monday, Wednesday or Friday AM). They should be told that they can expect to come to clinics daily for the first 2 weeks and then thrice a week for the first two months or so after discharge. Those patients with a double-J stent should be informed of this, and told that they can expect for it to be removed (day case cystoscopy) in 6-8 weeks.
- General advice: patients should be told to contact the ward directly if they develop any problems within the first month after discharge. The chance of rejection or other transplant complication is high during this period, and there should be a very low threshold for seeing the patient and checking the creatinine during this period. There is very little point telling a recently discharged patient to ‘see their GP’!

12 Death of a patient

The transplant surgical and renal medical consultant on-call should be informed at the earliest opportunity if a patient on the ward dies, as should the surgeon who performed any recent operation (relatives often come round to our offices, and it’s embarrassing if we don’t know what has happened).
A clinical summary must be sent to the patient’s GP and to the referring physician, by the transplant surgical fellow, and may require a brief dictated letter in addition to the mandatory EMR summary.

13 Living donors

13.1 Before surgery

When a living donor transplant is planned, the donor and recipient usually attend the ward on a week-day during the previous week for bloods, final cross-match and clerking. Bloods (including crossmatch of two units of blood), ECG and CXR will normally be arranged by the living donor coordinators in the morning. The patient will then attend P9W to be clerked by the renal transplant junior doctor. The donor will need to be consented by an appropriate person (usually the surgical fellow) – the recipient should already have a signed consent form in the notes. You will need to check all results prior to the weekend to ensure donor and recipient are still fit for surgery. They will then be admitted the evening before the planned operation.

All donors should have below knee TED stockings on from admission.

Prescribe:
- 40 mg of Clexane SC no later than 20.00 hours on the evening before surgery
- Phosphate enema for the evening before surgery
- One litre of 5% dextrose to run IV at 100 ml/hr from midnight on the night before operation
- Flucloxacillin 1 g IV at induction of anaesthesia (Vancomycin 1 g IV if penicillin cannot be given or MRSA considered a possibility)
- 100 ml of 20% Mannitol to be given intra-operatively

13.2 After surgery

If an NG tube had been place for technical reasons, this should come out when the patient returns to the ward.

Patients will be on PCAS on day 0, but this is to be taken down on day one.

Hb to be checked at 7 pm on Day 0 and the on-call Surgical Registrar informed of the result.

Prescribe:
- Clexane 20 mg SC OD at 18.00 until discharge.
- Regular paracetamol, 500 mg - 1 g PO QDS from day 0.
- Regular Diclofenac 50 mg PO TDS from day 1 for 3 -5 days.
- Tramadol 50-100mg PO PRN: not more than 4 times over 24 hours.
- Anti-emetic PRN.
- Glycerine suppositories PRN: patients with previous history of constipation should have laxatives from day 1 post-operatively.

General management:
- Allow free fluids from Day 0 and breakfast and food from Day 1.
- IV fluids should come down on Day 1 unless the patient is unable to take PO fluids.
Urinary catheter should be removed on the morning after surgery unless there is concern about haemodynamic status or urinary output.

Most patients will not have a surgical drain, but if one is present record drain volume daily and measure fluid amylase on Day 1 if left nephrectomy.

Do not remove drain without discussion with surgeon.

Aim to fully mobilize from Day 1.

Aim for discharge 2 - 3 days post-op. The donors are seen in the transplant clinic at 4 weeks, then on an annual basis by the living donor co-ordinators.

13.3 The recipient

At the same time as pre-clerking the donor, you will also see the recipient. Routine assessment and investigation are as for all other recipients (see section 2.2). However make sure that you:

- Note if the recipient is pre-dialysis
- If so, is the K+ safe?
- If K+ is >5mmol/L are there any medicines (ACE inhibitors etc) that should be stopped?
- Is pre-operative dialysis likely to be required – discuss blood results with transplant nephrology SpR

For patients on regular haemodialysis, an appropriate pre-operative dialysis slot will have been organized by the live donor co-ordinators.

Is the recipient either warfarinized, or taking clopidogrel? Seek advice.

13.4 Living donor coordinators

- Michelle Glasel 24437 (donors)
- Pauline Paul 24443 (recipients)
14 **Haemodialysis**

14.1 **Routine haemodialysis**

In-patient dialysis is coordinated by the nurse in charge on KCC dialysis unit, ext. 24438 Monday to Saturday 0700 – 1900).

Many patients admitted to Ward P9W require regular haemodialysis eg regular haemodialysis patients admitted for access or other surgery. The dialysis unit should be informed as soon as such patients are admitted. **Whenever possible they should be dialysed in their regular dialysis slots.** If this is not possible (eg because this clashes with the time of their operation), then the maximum possible notice must be given.

14.2 **‘Emergency’ haemodialysis**

<table>
<thead>
<tr>
<th>Contact:</th>
</tr>
</thead>
<tbody>
<tr>
<td>For urgent dialysis on P9W (0700 – 1900 [approx], Monday – Saturday call KCC haemodialysis (ext 24438) and speak to the nurse in charge (who coordinates in patient dialysis)</td>
</tr>
<tr>
<td>Outside of these hours (and if no reply from unit): Emergency haemodialysis nurse on-call via switchboard.</td>
</tr>
</tbody>
</table>

The most common scenario arises after transplantation. The transplanted kidney is not working well, although there may be some function, and the question arises: “is dialysis needed?”

Indications for genuine emergency dialysis (as for any other patient with renal failure) are rare:

1. Dangerous hyperkalaemia [significant ECG changes]
2. Severe pulmonary oedema
3. Profound acidosis causing circulatory compromise

These situations should not be allowed to arise in a patient under supervision in hospital!

A decision should be made (usually by the renal registrar) on the 08.30 ward round each morning as to whether or not dialysis is required that day for any patient whose transplant function is poor. If it is, then **the haemodialysis unit should be informed as soon as possible, and certainly before 09.30.** The dialysis prescription should be completed and sent down with the patient – the nursing staff on the dialysis unit are unable to commence haemodialysis without this. If temporary access is required, this should be inserted immediately after the ward round so that the patient is ready to receive treatment.
Appendix 1: Patient not transplanted

Renal Transplant Ward (P9W)
Prince of Wales Hospital
Tel 02-9382 4473

Dear Dr

Re: (Patient label)

This patient came to Prince of Wales Hospital in anticipation of a renal transplant. This was not performed for the following reason(s):

The patient has been told the following:

Signed

Fax/email copy of this form to the referring consultant:
St George Hospital - Fax: 02-9553 8192
St Vincent's Hospital - Fax: 02-8382 2032
Woollongong Hospital - Fax: 02-4227 6284
Appendix 2: Standard immunosuppression protocol

All live and deceased donor transplants

- **Basiliximab**: 20mg IV on days 0 and 4
- **Tacrolimus** M (Prograf) **0.15mg/kg** BD (target trough level 6-10µg/L)
- **MMF**: 1000mg BD
- **Prednisolone**: 30mg OD

Delayed graft function (optional)

- **Basiliximab**: 20mg IV on days 0 and 4
- **Tacrolimus** (Prograf) **0.10mg/kg** BD (target trough level 5-8µg/L, increasing to 6-10µg/L when graft functions)
- **MMF**: 1000mg BD
- **Prednisolone**: 30mg OD

Acute rejection (AR)

- **Increase tacrolimus** to achieve trough level 8-12µg/L
- Maintain **MMF** at **1000mg BD**
- Maintain **prednisolone** dose at **30mg OD**

No acute rejection

- **Reduce prednisolone** to 25mg OD on discharge, and then by 2.5mg weekly to 5mg or withdrawal
- Maintain **tacrolimus** to achieve trough level 6-10µg/L for 6 months, then 5-8µg/L
- **Reduce MMF** to 750mg BD at 1 month
- **Reduce MMF** to 500mg BD at 6 months

- **Reduce prednisolone** to 15mg OD 1 month after AR episode, then by 2.5mg weekly until 5mg OD
- Maintain **tacrolimus** to achieve trough level 8-12µg/L for 3 months, then 6-10µg/L for 3 months, then 5-8µg/L
- Maintain **MMF 1000mg BD** for 3 months, then either reduce to 750mg BD or 500mg BD
Appendix 3: Drug interactions

Tacrolimus (also Cyclosporine and sirolimus)

<table>
<thead>
<tr>
<th>Interaction effect</th>
<th>Drug class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase CNI and mTOR levels</td>
<td>Calcium channel blocker</td>
<td>verapamil, diltiazem, lercanidipine, nifedipine</td>
</tr>
<tr>
<td></td>
<td>Antifungal agents</td>
<td>ketoconazole, fluconazole, itraconazole, miconazole, voriconazole</td>
</tr>
<tr>
<td></td>
<td>Anti-retroviral agent</td>
<td>indinavir, saquinavir, fosamprenavir</td>
</tr>
<tr>
<td></td>
<td>Antibiotic</td>
<td>erythromycin, clarithromycin, chloramphenicol, chloroquine, hydroxychloroquine, doxycycline</td>
</tr>
</tbody>
</table>

| Decrease CNI and mTOR level | Anticonvulsant | phenytoin, carbamazepine, barbiturates |
| | Anti-tuberculous agent | isoniazid, rifampicin |

Drugs which may potentiate Tacrolimus and Cyclosporine nephrotoxicity

- Amphotericin B
- Aminoglycosides (eg gentamicin)
- NSAIDs (all of them)
- Sirolimus

Drugs whose metabolism is altered by Cyclosporine or tacrolimus

Cyclosporine potently inhibits metabolism of simvastatin, atorvastatin and rosuvastatin, increasing the risk of myopathy and occasionally rhabdomyolysis. Cyclosporine-treated patients should only receive pravastatin or fluvastatin (where metabolism is independent of the CYP3A4 enzyme).

Tacrolimus has much less effect on simvastatin and atorvastatin metabolism, both of which may be prescribed in tacrolimus-treated patients.
Cyclosporine inhibits biliary excretion of MMF, leading to reduced enterohepatic recirculation and consequently reduced MMF exposure. Neither tacrolimus nor sirolimus share this effect. Accordingly an MMF dose of 500 - 750 mg BD in tacrolimus-treated patients is equivalent to 1000 – 1500 mg BD in Cyclosporine–treated patients.

Azathioprine

Allopurinol increases the effect of azathioprine very significantly, with a high risk of profound (sometimes fatal) myelosuppression. If the patient is taking allopurinol do the following:

- **Is allopurinol necessary?** Following successful transplantation hyperuricaemia usually resolves. If the patient has not experienced troublesome gout then discontinue allopurinol and prescribe azathioprine.
- **However,** if the patient has recurrent acute gout, tophaceous gout, a history of uric acid kidney stones or urate-related nephropathy, then continue allopurinol. In these circumstances replace azathioprine with mycophenolate mofetil (MMF) 750mg BD.
- **Do not prescribe azathioprine and allopurinol together as there is a risk of fatal toxicity.**
Appendix 4: ABO blood group incompatible transplants

Background

In principle, solid organ transplants must be performed from a donor of an ABO blood group compatible with the intended recipient. The donor and recipient are incompatible if the recipient has pre-formed antibodies to donor ABO antigen(s) - A, B or both.

<table>
<thead>
<tr>
<th>Donor Recipient</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Identical</td>
<td>Incompatible</td>
<td>Incompatible</td>
<td>Compatible</td>
</tr>
<tr>
<td>B</td>
<td>Incompatible</td>
<td>Identical</td>
<td>Incompatible</td>
<td>Compatible</td>
</tr>
<tr>
<td>AB</td>
<td>Compatible</td>
<td>Compatible</td>
<td>Identical</td>
<td>Compatible</td>
</tr>
<tr>
<td>O</td>
<td>Incompatible</td>
<td>Incompatible</td>
<td>Incompatible</td>
<td>Identical</td>
</tr>
</tbody>
</table>

Antibodies specific for blood group A or B carbohydrate antigens develop naturally during the first few years of life (likely in response to similar carbohydrate antigens on comensal gastrointestinal bacteria). Thus an individual without either A or B antigens (that is, ABO blood group O) develops antibodies to both A and B, and so on.

Antibodies to ABO antigens are important in transplantation because ABO antigens are expressed on endothelial cells. Thus, if a blood group A kidney is transplanted into a blood group B individual, pre-formed anti-A antibodies will bind to A antigen on the graft endothelial cells, activate complement and coagulation, and potentially destroy the graft. However, over the last 30 years it has become clear that:

- The quantity of natural antibody to non-self ABO antigens varies enormously between individuals
- Low levels of antibody appear **not** to be harmful to transplanted organs
- Transplantation is safe if anti-donor A or B antibody can be reduced to low levels at the time of transplantation.

In practice

ABO blood group incompatible live donors are now routinely considered. The most important issue is to determine the quantity of anti donor A or B antibody in the recipient circulation. This is determined by the blood transfusion laboratory, and the result expressed as a **titre**. The titre is the highest dilution of serum at which the antibody is able to agglutinate red blood cells.
Thus an anti-A titre of 1:8 means that a 1:16 dilution of serum (the next titre) is sufficient to render the antibody ineffective. A titre of 1:256 implies a much higher quantity of antibody. The laboratory reports the titre of both IgG and IgM antibodies.

An ABO incompatible transplant can be performed if the titre of anti-donor A or B antibody is <1:8, or can be reduced to <1:8 by antibody removal (plasma exchange or immunoabsorption). The following protocols apply, depending on the recipient’s starting titre of anti-donor antibody.

If you are looking after the recipient of an ABO blood group incompatible transplant you must read the section on administration of blood products.
Antibody removal not required

Use this protocol for any patient receiving an ABO incompatible transplant not requiring antibody removal:

- ABO incompatible pairs in which the recipient has no detectable IgG or IgM antibodies against the donor ABO blood group or
- ABO incompatible pairs in which the recipient ABO IgG or IgM titre (anti-A or anti-B) is 1:4 or less

30 days (approx.) before the transplant – confirm anti-A or anti-B titre is 1:4 or less

7 days before the transplant – begin immunosuppressive treatment with MMF 750mg BD. Repeat ABO titre.

One day before the transplant Repeat ABO titre.

At the time of transplantation – methylprednisolone 10mg/kg IV at the time of graft reperfusion.

Following transplantation:

- Start prednisolone 30mg OD
- Start tacrolimus 0.1mg/kg BD to achieve trough level 8-12µg/L
- Increase MMF to 1000mg BD
- Give basiliximab 20mg IV on post-transplant days one and three
- Start prophylactic valganciclovir, nystatin and ranitidine (see section 3.8)
- Check ABO titre on post-transplant day seven.
Antibody removal required – LOW TITRE

Use this protocol if the recipient anti-ABO IgG or IgM titre is >1:4 but no higher than 1:32

*Check tacrolimus level on pre-operative day -10 and -7, and adjust dose to achieve trough level 4-8μg/L. Following transplantation increase the dose further aiming for a trough level of 8-12μg/L.

30 days (approx.) before the transplant – confirm anti-A or anti-B IgG and IgM titre

14 days before the transplant – begin immunosuppressive treatment with MMF + Prograf – see above. Start prophylactic cotrimoxazole (on MWF only).

7 days before the transplant – check tacrolimus level and adjust dose to achieve trough level 4-8μg/L. If tolerating MMF 750mg BD then increase the dose to 1000mg BD. Repeat ABO titre.

3-5 days before the transplant – antibody removal with double filtration plasmapheresis (DFPP)

- For IgG or IgM titres 1:8 or 1:16 schedule 3 DFPP treatments on days -3, -2 and -1
- For IgG or IgM titres 1:32 schedule 4 DFPP treatments on days -4, -3, -2 and -1.
- Check anti-A or B titres at the beginning and end of the final treatment. The aim is for both IgG and IgM titres to be 1:4 or less on the morning of transplantation.
- **FFP from the same blood group of the kidney donor** must be used for the final exchange prior to transplant and the first exchange post-transplant.
At the time of transplantation – methylprednisolone 10mg/kg IV at the time of graft reperfusion.

Following transplantation:

- Start prednisolone 30mg OD
- Increase tacrolimus to achieve trough level 8-12µg/L
- Continue MMF at 1000mg BD
- Give basiliximab 20mg IV on post-transplant days one and three
- Start prophylactic valganciclovir, nystatin and ranitidine
- Post-transplant antibody removal is not required unless there is a rapid rise in anti-A or B titre. Check ABO titre on post-transplant days one and seven, or if there is graft dysfunction.
Antibody removal required – HIGH TITRE

Use this protocol if the recipient anti-ABO IgG or IgM titre is 1:64 or greater

*Check tacrolimus level on pre-operative day -10 and -7, and adjust dose to achieve trough level 4-8µg/L. Once the patient begins immunoabsorption check tacrolimus levels on Mon, Wed and Fri. Following transplantation increase the dose further aiming for a trough level of 8-12µg/L.

30 days (approx.) before the transplant – confirm anti-A or anti-B IgG and IgM titres.

14 days before the transplant – begin immunosuppressive treatment with MMF + Prograf. Start prophylactic cotrimoxazole (on MWF only).

7 days before the transplant – check tacrolimus level and adjust dose to achieve trough level 4-8µg/L. If tolerating MMF 750mg BD then increase the dose to 1000mg BD. Repeat ABO titre.

7-10 days before the transplant – begin antibody removal using plasmapheresis (PP). The exact schedule for each patient will vary, but will typically comprise 5-7 treatments over 7-10 days depending on ABO antibody titre.

IVIg (0.5g/kg) will be administered after the last pre-operative PP

Ideally anti-A or B IgG and IgM titres are measured before and after each IA treatment, but in practice a more limited regime is reasonable (see below). The titre on the morning of transplantation should be 1:8 or less.

FFP from the same blood group of the kidney donor must be used for the final exchange prior to transplant and the first exchange post-transplant.
At the time of transplantation – methylprednisolone 10mg/kg IV at the time of graft reperfusion.

Following transplantation:

- Start prednisolone 30mg OD
- Increase tacrolimus to achieve trough level 8-12μg/L
- Continue MMF at 1000mg BD
- Give basiliximab 20mg IV pre-transplant and after the final immunoabsorption treatment (not day 3 – it will all be removed by immunoabsorption!)
- Start prophylactic valganciclovir, nystatin and ranitidine
- Elective post-transplant antibody removal is required usually on post-transplant days 1, 3 and 6. Check ABO titre on post-transplant day 7 or at any time if there is graft dysfunction.

Blood products in ABO incompatible transplants

All serum-based blood products (principally FFP but also platelets and cryoprecipitate) will contain natural anti-A or B antibodies derived from the blood donor. Accordingly great care is needed when administering such products to patients in whom anti-A or anti-B antibodies have been eliminated to facilitate an ABO incompatible transplant.

If the recipient is ABO group O, then use donor ABO group FFP, platelets or cryoprecipitate in the perioperative period, and if required in the first three months post-transplant (group AB products are also suitable, although AB cryoprecipitate does not exist).

If the recipient is not group O then use:

- Group AB FFP – which has neither anti-A or B antibodies and thus will not react with either the donor organ or the recipient
- Donor group platelets and cryoprecipitate. Although these products do contain small amounts of anti-A or anti-B and potentially react with the recipient, clinical consequences (haemolysis) are extremely unlikely. In these circumstances the transfusion laboratory provides ‘high titre negative (HTN)’ cryoprecipitate, meaning that blood donors with high titre anti-A or anti-B antibodies are not used.

Measuring ABO antibody titres during antibody removal

The anti-A or B IgG and IgM titres on the morning of transplantation should be less than 1:8, although in patients with a high starting titre 1:8 is acceptable. If the timing of living donor transplants is on a Tuesday AM it makes performing titres immediately pre-operatively
impractical, and so the decision to proceed with transplantation is based on Mondays titres.

Samples for ABO titre go in a **4.5ml EDTA** container and must be labelled clearly indicating either pre- or post- antibody removal.

For low titre patients:

- Send a sample at the beginning of the first DFPP treatment
- Send samples pre- and post-DFPP on the day before transplantation (usually a Monday)
- The **pre**-treatment sample is a good estimate of the expected titre on the following morning

For high titre patients:

- Send a sample at the beginning of the first immunoabsorption (IA) treatment
- Send samples pre- and post-IA on the Friday before transplantation (see graph below – open circles represent samples analyzed for ABO titre)
- Send **pre**-treatment samples on Saturday and Sunday (for analysis on Monday)
- Send samples pre- and post-IA on the day before transplantation (usually Monday). The pre-treatment sample should be 1:8 or less.

![Graph showing titre levels over a week](image-url)
Appendix 5: Administration of thymoglobulin

Administration of Thymoglobulin needs to be supervised closely. In patients with fluid overload the first dose may rarely precipitate fatal pulmonary oedema (due to cytokine release making lung capillaries leaky). Hence:

The patient must be reviewed by a senior member of staff (registrar / consultant) before Thymoglobulin is given. If pulmonary oedema is present (obtain CXR), it requires treatment, almost certainly by dialysis, before treatment with Thymoglobulin commences.

The first dose of Thymoglobulin should be administered under close supervision.

Protocol for the administration of thymoglobulin

1. **Before** treatment ensure that you have done all of the following:
 - Send blood for FBC, and 10 ml clotted sample to tissue typing
 - Document the donor and recipient CMV IgG status
 - Assess volume status, and if necessary obtain a CXR to exclude pulmonary oedema (conveniently done after insertion of a central line). Oliguric patients may require dialysis and ultrafiltration.
 - MSU, and blood cultures if febrile.

2. Thymoglobulin must be infused into a ‘high-flow’ vein. In practice this means a **central line or a PICC**, although in exceptional circumstances it is also possible to infuse into an AV fistula.

3. The treatment dose of Thymoglobulin is **1.5mg/kg** diluted in 100-500 ml 0.9% NaCl. The final concentration should be <0.5mg/ml. A single dose should not exceed 150mg.

4. Give **pre-medication** with paracetamol 1g PO, chlorpheniramine 10mg IV and hydrocortisone 200mg IV.

5. Rapid infusion rates have been associated with case reports consistent with cytokine release syndrome. In rare instances, severe cytokine release syndrome can be fatal.

6. The first treatment dose should be infused over a minimum of 6 hours and subsequent doses over > 4 hours. If the patient develops an infusion reaction (see below) then stop the infusion, wait for the symptoms to subside, and then restart at 50% the initial infusion rate. Infusion reactions are uncommon after the first dose.

7. Most patients develop some of: fever, chills, rigors, myalgia, headache, tachycardia and either ↑ or ↓ BP. This is a **normal response** to the initial dose of thymoglobulin (cytokine release) and does not preclude subsequent treatment.
8. **First treatment:** set the flow rate to deliver the dose over a minimum of 6 hours for the first dose. Watch for anaphylaxis (swelling of lips, tongue and pharynx, bronchospasm, hypotension). If these occur:

- **Stop** the infusion at once
- Get help – if the airway is compromised or the patient is not breathing call 777 – otherwise call the nephrology, transplant or on-call registrar
- Lie patient flat, give 100% oxygen and ensure venous access
- Give adrenaline 0.5-1mg IM (= 0.5 ml 1:1000 adrenaline), repeated after 10 minutes if necessary
- Given chlorpheniramine 10mg IV and hydrocortisone 200mg IV to prevent recurrence

9. **Subsequent treatments:** Set the flow rate to deliver the dose over 4 hours for subsequent doses.

10. For treatment of acute rejection thymoglobulin should be given for a total of 7-14 days, based on graft function, and severity of rejection as was WBC, platelet and lymphocyte counts (lymphocytes subsets recommended at day 7 if used for >7 dyas), which should be reviewed each day before prescribing Thymoglobulin:

- If the total lymphocyte count is < 0.05 x 10^9/L then no Thymoglobulin should be given that day.
- In addition, the dose of Thymoglobulin is influenced by both total WCC and platelet count.
- If the total WCC is < 2.5 x 10^9/L then reduce the Thymoglobulin dose by 50%, and if < 2.0 x 10^9/L do not give any Thymoglobulin, whatever the lymphocyte count.
- If the total platelet count is < 80 x 10^9/L then reduce the Thymoglobulin dose by 50%, and if < 50 x 10^9/L do not give any Thymoglobulin, whatever the lymphocyte count.

11. **Oral immunosuppression in addition to Thymoglobulin**

- **Tacrolimus.**
 It is important that tacrolimus levels are therapeutic before the end of the Thymoglobulin course. The best approach is to maintain tacrolimus treatment with a target trough level of 6-10 µg/L. This allows easy upward-titration of tacrolimus dose to achieve higher therapeutic levels (8-12 µg/L) if required, usually on the day following the last Thymoglobulin dose.

- **Anti-proliferative drugs** (MMF, azathioprine and sirolimus)
 All of these should be omitted once Thymoglobulin treatment is started. Anti-proliferative drugs should be reintroduced based on platelet and WCC count, usually MMF 500 mg BD once it is clear that platelets are maintained at > 100 x 10^9/L and WCC > 3.0 x 10^9/L. Aim to reintroduce anti-proliferatives before the final dose of Thymoglobulin.

- **Steroids** should be continued, usually 20 mg Prednisolone
12. **Prophylaxis against infection** should include:

- **Cotrimoxazole 800/160mg PO** Mon, Wed, Fri (if not already prescribed) continued for six months following treatment.
- **CMV prophylaxis with valganciclovir** if either donor or recipient is CMV IgG seropositive (D+ or R+), for at least three and possibly six months (see section 3.6.5 for dosing).
- **Consider acyclovir prophylaxis** for CMV D-/R- patients (to protect against other herpes virus infections, particularly herpes simplex virus (HSV) and VZV).
- Nystatin 100,000 U QDS for 30 days to protect against oral and oesophageal candidiasis.
Appendix 6: Acute antibody-mediated rejection (ABMR)

Background:

1. ABMR occurs early following transplantation, incidence reported from 0-8%.
2. Most frequently occurs in sensitised patients (blood transfusion, pregnancies) and those with previous failed allografts (i.e. exposure to foreign HLA).
3. Characterised by endothelial cell injury lining blood vessels, inflammatory infiltrates and intravascular coagulation. Capillary endothelium can express both class I and II antigens.
4. Anti-donor specific antibodies (DSA) are involved by binding to vascular endothelial cells resulting in activation of complement ('endothelium activation'), increased permeability of endothelium and resultant inflammation, thrombosis and ischaemia. Most DSA typically directed against donor HLA antigens and circulating de novo DSA can precede renal allograft loss by 6 months to 8 years.
5. Studies have indicated that DSA to class I and class II detected by sensitive methods pre-transplant, even at low levels, can be associated with severe ABMR post-transplant.
6. C4d (split product generated during complement activation of classical pathway triggered by anti-DSA) deposition in peritubular capillaries (PTC; could be widespread involving >50% sampled capillaries or focal) correlated with the detection of de novo DSA in recipient’s serum; i.e. capillary C4d staining specific marker of anti-HLA alloantibody-dependent allograft injury. Significance of focal C4d staining uncertain.
7. Acute tubular necrosis/delayed graft function (i.e. ischaemic injury) does not lead to C4d deposition in PTC.
8. Cardinal features of ABMR include:
 - Morphologic evidence of tissue injury.
 - Immunopathologic evidence for antibody-mediated action (i.e. C4d deposition).
 - Serologic evidence of circulating antibodies to donor HLA or to other donor endothelial antigens.
9. Characteristic morphological features alone or in combination include:
 - Accumulation of polymorphonuclear neutrophils and monocytes/macrophages in cortical PTCs.
 - PTCs are dilated.
 - Presence of glomerulitis with neutrophils and/or monocyte infiltration.
 - Arteriolar and glomerular fibrin microthrombi.
 - Severe vasculitis with fibrinoid necrosis.
10. Only the presence of C4d staining is sensitive (95%) and specific (96%) for circulating anti-donor antibodies in patients with ABMR occurring in the first 3 months post-transplant (n=67, Mauiyedi S et al, JASN 2002).
11. ABMR often co-exist with cellular (T cell mediated) rejection which may reflect early and specific T and B cell co-operation. Detection of class-switched allo-antibody is invariably associated with the clinical expansion of
T cells with indirect allo-specificity; i.e. indirect pathway T cells can provide ‘help’ to allo-specific B cells leading to the eventual development of a pool of memory B cells. These observations do indicate that treatment targeting T and B cells in ABMR may be appropriate

12. ABMR is relatively unresponsive to high-dose steroids and T cell-targeted therapies

13. Conventional therapies achieve a 1-year allograft survival of only 15-50%. Positive C4d staining is an independent poor prognostic indicator for immediate graft survival and increased risk of long-term graft dysfunction with early allograft loss

14. Transplant glomerulopathy was found to be associated with C4d glomerular deposits and with peritubular capillary basement membrane multilayering (features indicating chronic allograft nephropathy, CAN). It has been shown between 17-61% of typical ‘chronic rejection’ cases with arterial and/or glomerular pathological changes had capillary C4d deposition

15. ‘Accomodation’ may occur in certain transplant recipients whereby circulating anti-HLA allo-antibodies and C4d on biopsies may be present without apparent deleterious consequences suggesting that the relationship between allo-antibodies and allograft function is not clear cut

Banff criteria for antibody-mediated rejection:

<table>
<thead>
<tr>
<th>Banff criteria for antibody-mediated rejection¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute/active ABMR; all three features must be present for diagnosis</td>
</tr>
<tr>
<td>1. Histologic evidence of acute tissue injury, including one or more of the following:</td>
</tr>
<tr>
<td>Microvascular inflammation (g > 0 and/or ptc > 0)</td>
</tr>
<tr>
<td>Intimal or transmural arteritis (v > 0)</td>
</tr>
<tr>
<td>Acute thrombotic microangiopathy, in the absence of any other cause</td>
</tr>
<tr>
<td>Acute tubular injury, in the absence of any other apparent cause</td>
</tr>
<tr>
<td>2. Evidence of current or recent antibody interaction with vascular endothelium, including at least one of the following:</td>
</tr>
<tr>
<td>Linear C4d staining in ptc (C4d2 or C4d3 by IF, or C4d > 0 by IHC)</td>
</tr>
<tr>
<td>At least moderate microvascular inflammation (g + ptc ≥ 2)</td>
</tr>
<tr>
<td>Increased expression of gene transcripts indicative of endothelial injury</td>
</tr>
<tr>
<td>3. Serologic evidence of DSAs [HLA or other antigens]</td>
</tr>
</tbody>
</table>

Chronic, active ABMR; all three features must be present for diagnosis

<table>
<thead>
<tr>
<th>Chronic, active ABMR; all three features must be present for diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Morphologic evidence of chronic tissue injury, including one or more of the following:</td>
</tr>
<tr>
<td>Transplant glomerulopathy (g > 0), if no evidence of chronic TMA</td>
</tr>
<tr>
<td>Severe ptc basement membrane multilayering (requires EM)</td>
</tr>
<tr>
<td>Arterial intimal fibrosis of new onset, excluding other causes</td>
</tr>
<tr>
<td>2. Evidence of current or recent antibody interaction with vascular endothelium, including at least one of the following:</td>
</tr>
<tr>
<td>Linear C4d staining in ptc (C4d2 or C4d3 by IF, or C4d > 0 by IHC)</td>
</tr>
<tr>
<td>At least moderate microvascular inflammation (g + ptc ≥ 2)</td>
</tr>
<tr>
<td>Increased expression of gene transcripts indicative of endothelial injury</td>
</tr>
<tr>
<td>3. Serologic evidence of DSAs [HLA or other antigens]</td>
</tr>
</tbody>
</table>

C4d staining without evidence of rejection; all three features must be present for diagnosis

<table>
<thead>
<tr>
<th>C4d staining without evidence of rejection; all three features must be present for diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Linear C4d staining in ptc (C4d2 or C4d3 by IF, or C4d > 0 by IHC)</td>
</tr>
<tr>
<td>2. g = 0, ptc = 0, og = 0 by light microscopy and by EM if available; v = 0; no TMA, no ptc basement membrane multilayering, no acute tubular injury</td>
</tr>
<tr>
<td>3. No acute cell-mediated rejection (Banff 97 type 1A or greater) or borderline changes</td>
</tr>
</tbody>
</table>

Abbreviations:

ABMR, antibody-mediated rejection; DSAs, donor specific antibodies; EM, electron microscopy; HLA, human leukocyte antigen; IF, immunofluorescence; IHC, immunohistochemistry; ptc, peritubular capillaries; TMA, thrombotic microangiopathy.
Available treatment options:

1. **Plasmapheresis** (PP) –
 - remove preformed allo-antibodies

2. **Intravenous immunoglobulin** (IVIg)
 - Passively binds DSA and IgG, which actively inhibits IgM formation and further propagation of humoral cascade
 - Inhibits complement-mediated endothelial cell injury
 - Neutralisation of auto-antibodies
 - Down-regulate antibody synthesis by inhibiting B- and T cell proliferation
 - Increase B cell apoptosis

3. **Combination of PP/IVIg**
 - reverses 90-95% AHR

4. **Rituximab** (anti-CD20-depleting agent)
 - A human/mouse chimeric anti-CD20 monoclonal antibody
 - The potency of rituximab to deplete B cells has been well documented with an absence of circulating CD20+ B cells for up to 12 months by inducing cell lysis via complement and antibody-dependent cytotoxicity
 - Binds to CD20, a transmembrane molecule located on pre-B and mature B lymphocytes (CD20 involved in the activation of cell cycle initiation)
 - This approach needs to be investigated before it can be recommended as standard therapy for AHR, but has been used in refractory cases as rescue therapy

Results from a phase III, multicenter, randomized, placebo-controlled trial (RITUX ERAH) that examined the effect of rituximab (+plasmapheresis, IVIG) on a composite measure of graft loss or absence of improvement of renal function, in patients with ABMR showed no advantage of rituximab over control for the graft loss or renal function outcome. (Sautenet B et al. Transplantation 2015; Epub)

5. **Eculizumab** (complement inhibitor)
 - Preliminary clinical trials
 - Blocks the deleterious pro-inflammatory consequences of in-situ complement activation triggered by anti-donor allo-antibodies

Treatment Protocol

Once ABMR is established which should include morphologic evidence of tissue injury, immunopathologic evidence for antibody-mediated action (i.e. C4d deposition) ± serologic evidence of circulating antibodies to donor HLA or to other donor endothelial antigens, treatment should consists of:

- PP alternate daily for at least 4 sessions followed by IVIg 0.5g/kg post-PP (total of 2g/kg). Further PP depending on clinical and biochemical response
- IV methyprednisolone ± thymoglobulin if T cell mediated rejection present (tubulitis/lymphocytic tubulo-interstitial infiltrate)
- If on CyA, change from Cya to tacrolimus (aim level 7-12)/MMF combination for maintenance immunosuppression
- Monitor DSA titres pre-treatment and following treatment (not a guide to treatment) and then 6-monthly
- Use valganciclovir for CMV prophylaxis during treatment even in low-risk patients (i.e. CMV positive to positive transplants)
- In refractory cases: Rituximab 375mg/m² (single dose) to be considered – check circulating CD19+ B cells 3-7 days post-dose
- ?Protocol biopsies/DSA monitoring in all patients
Appendix 7: Management of BK virus infection

Summary

BK virus causes tubulointerstitial nephritis and ureteral stenosis in up to 10% of kidney allograft recipients and causes allograft failure in 15-50% of affected individuals. About 85% of patients who develop BK viraemia do so within the first 3-4 months after transplantation.

The two principal approaches to the management of BK virus-associated nephropathy (BKVAN) in kidney allograft recipients are:

- A screening strategy for detection of infection prior to the development of clinically significant nephropathy. This involves periodic monitoring for BK virus activation in urine or blood to start early intervention.
- A treatment strategy to allow for expanding BKV-specific cellular immune responses, curtailing of BKV replication in the graft and clearance of BKV viraemia. This involves:
 - decreasing immunosuppressive medications to patients with a presumptive or biopsy-proven diagnosis of BKVAN, and
 - considering to administer antiviral agents to patients with only biopsy-verified BKVAN, progressive allograft dysfunction and/or sustained high-level plasma BKV load.

Because effective and safe antiviral therapies are lacking, among all renal allograft recipients, a screening for BKV replication has become the key recommendation to initiate and guide stepwise reduction of immunosuppression, rather than a treatment strategy for BK-induced nephropathy.

Screening of BK virus-associated nephropathy (see flow diagram)

Screening methods include urine cytology (decoy cells) and PCR-based detection of urine or plasma BK virus DNA. Positive tests for decoy cells or urinary viral load should be confirmed within 4 weeks and/or followed by quantitative (real-time) PCR detection of plasma BK virus DNA with threshold levels for presumptive disease (plasma DNA load >10⁴ cp/ml*).

* Cut-off levels for viral detection should be based on PCR assays used at individual institutions.

In low-incidence diseases with a serious adverse outcome, such as BK infection, the test’s PPV and sensitivity critically determine its practical utility for screening, rather than specificity - which can be deceptively high. The PPV for urinary decoy cells is 5-15% and thus excessively low. The PPV for DNA load >10⁴ cp/ml is 45%. Quantitative viraemia is currently preferred by KDIGO for screening and offers superior predictive characteristics, and being a laboratory test, yields better reproducible intratest imprecision.

An approach is to screen all renal transplant patients with plasma DNA load by PCR as follows:

- monthly at months 1 to 6 and at months 9, 12, 18, and 24 post-transplant or
- when renal allograft dysfunction occurs or
- when an allograft biopsy is performed for allograft dysfunction or
- after treatment of rejection.
Suggested approach for screening and management of BKV-associated clinical syndromes

If plasma BK-PCR becomes positive, further evaluation and treatment is based upon the serum creatinine concentration.

- If the serum creatinine concentration is increased compared with baseline values, a kidney biopsy should be performed. If the kidney biopsy shows:
 - both BK nephropathy plus interstitial inflammation, options for treatment include administering intravenous immune globulin (IVIG), decreasing immunosuppression, and treating with antiviral therapy.
 - BK nephropathy only, treat with decreased immunosuppression and antiviral therapy.
o no evidence of BK nephropathy, decrease immunosuppression and continue to monitor blood BK-PCR every two weeks until the assay becomes negative.

- If the serum creatinine concentration is not increased compared with baseline values, a diagnosis of “presumptive” BKVAN should be made in patients with sustained plasma BKV DNA >10⁴ cp/ml.

Treatment of BK virus-associated nephropathy (BKVAN)

The cornerstone of therapy is to decrease immunosuppressive medications.

For patients with “definitive” BKVAN only

- **Strategy 1:**
 - Step 1: reduce antiproliferative drug by 50%
 - Step 2: reduce CNI by 25-50% in one or two steps*

- **Strategy 2:**
 - Step 1: reduce CNI by 25-50% in one or two steps*
 - Step 2: reduce antiproliferative drug by 50%

- Monitor serum creatinine in 1-2 week intervals and BKV load in 2-4 week intervals

(* Tac level <6ng/ml, CyA trough level <120ng/ml, sirolimus level <6ng/ml)

For patients with “presumptive” BKVAN with or without rise in serum creatinine concentration

- decrease immunosuppression and monitor blood BK-PCR every 2-4 weeks until the assay becomes negative.
- if the serum creatinine concentration increases during the monitoring period, a kidney biopsy should be performed.

For patients with “definitive” BKVAN and concomitant rejection* or in those with histopathological changes that are indistinguishable from those of rejection

* The diagnosis of acute rejection concurrent with BKVAN is only considered secure if one finds endarteritis, fibrinoid vascular necrosis, glomerulitis, or C4d deposits along peritubular capillaries

- Treat acute rejection with IV methylprednisolone with subsequent reduction in maintenance immunosuppression, Step 1 / Strategy 1 or 2
- Consider administering IVIG 2g/kg on 4 divided doses over 5-7 days.

For patients with “definitive” BKVAN who have progressive allograft dysfunction or sustained high-level plasma BKV load despite a maximal decrease in immunosuppressive therapy for a period of several weeks’ to months’ duration, administration of antiviral therapy should be considered, although efficacy has not been proven.

Antiviral agents that have been associated with anecdotal success include, Leflunomide, IVIG and cidofovir. None have been approved by the FDA for the treatment of BKVAN.

Leflunomide

Administered orally as a replacement for discontinued mycophenolate mofetil
Dosage: loading dose of 100mg for 5 days, followed by an initial maintenance
dose of 40mg daily. If available, blood levels should be measured and target
levels of 50 to 100µg/ml should be aimed for
Monitoring: Regular blood counts and liver function tests once a month, plasma
BKV loads once every two weeks. Significant toxic effects have been described
including hepatitis, hemolysis, thrombotic microangiopathy, bone marrow
suppression and fungal pneumonia.

Cidofovir
Dosage: 0.25 to 0.5mg/kg IV, at 1–3 weekly intervals.
Monitoring: The patients should be followed closely by serial measurements of
serum creatinine concentration, leukocyte counts, eye symptoms and vision
(uveitis up to 35%), as well as bi-weekly plasma BKV load.

Intravenous immunoglobulin (IVIG)
Dosage: from 0.2 to 2.0 g/kg in conjunction with reduced immunosuppression.
Commercially available IVIG preparations contain high titres of potent BKV
neutralizing antibodies.

**Acute rejection after reduced immunosuppression for presumptive or
definitive BKVAN should be treated according to standard protocols**

If acute rejection is diagnosed in allograft biopsies, after clearance of plasma
BKV DNA and BKVAN by histology, anti-rejection treatment is indicated and a
judicious increase in maintenance immunosuppression be considered.
However, administration of lymphocyte depleting agents should be done after
careful evaluation of the competing risks of failure to control rejection and
recurrence of BKVAN.
Appendix 8: Outpatient management

Minimum attendances:

First 15 days: daily except Sundays if well
2 – 6 weeks: three times per week
7 – 12 weeks: twice per week
3 – 6 months: once per week
6 – 12 months: once per fortnight
12 – 24 months: once per month
>24 months: once every 2 – 4 months.

Aim to return patient to referring hospital at 2 weeks, depending on clinical progress. Detailed letter required. Please discuss if in doubt.

Dose of prednisolone if uncomplicated and rejection-free

<table>
<thead>
<tr>
<th>Prednisolone daily dose:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>30mg</td>
</tr>
<tr>
<td>2 weeks</td>
<td>27.5mg</td>
</tr>
<tr>
<td>3 weeks</td>
<td>25mg</td>
</tr>
<tr>
<td>4 weeks</td>
<td>22.5mg</td>
</tr>
<tr>
<td>5 weeks</td>
<td>20mg</td>
</tr>
<tr>
<td>6 weeks</td>
<td>17.5mg</td>
</tr>
<tr>
<td>7 weeks</td>
<td>15mg</td>
</tr>
<tr>
<td>8 weeks</td>
<td>12.5mg</td>
</tr>
<tr>
<td>9 weeks</td>
<td>10mg</td>
</tr>
<tr>
<td>10 weeks</td>
<td>7.5mg</td>
</tr>
<tr>
<td>3 mths on</td>
<td>5mg</td>
</tr>
</tbody>
</table>

But – ensure tacrolimus levels are satisfactory before reducing dose. Some patients (prolonged DGF, those already on maintenance steroid, those who have had an acute rejection episode, antibody-incompatible transplants) may require more gradual steroid reduction – ask!

Mycophenolate dose if uncomplicated and rejection-free

<table>
<thead>
<tr>
<th>Mycophenolate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>At around 8-12 weeks reduce CellCept to 500mg bd</td>
<td></td>
</tr>
</tbody>
</table>
Tacrolimus target levels to adjust dose of Prograf if uncomplicated and rejection-free

<table>
<thead>
<tr>
<th>Tacrolimus:</th>
<th>µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target trough level</td>
<td>0 - 2 wks 6 - 10</td>
</tr>
<tr>
<td>2 - 4 wks</td>
<td>6 - 9</td>
</tr>
<tr>
<td>4 - 24 wks</td>
<td>5 - 8</td>
</tr>
<tr>
<td>6-12 mths</td>
<td>3 - 7</td>
</tr>
<tr>
<td>Beyond 1 yr</td>
<td>2 - 5</td>
</tr>
</tbody>
</table>

Cyclosporine target levels to adjust dose of Neoral if uncomplicated and rejection-free

<table>
<thead>
<tr>
<th>Months post-transplant</th>
<th>C2</th>
<th>C0</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 month</td>
<td>1500 - 1800µg/l</td>
<td>200 - 350µg/l</td>
</tr>
<tr>
<td>months 2 & 3</td>
<td>1000 - 1500µg/l</td>
<td>150 - 250µg/l</td>
</tr>
<tr>
<td>months 4 - 6</td>
<td>700 - 1200µg/l</td>
<td>150 - 200µg/l</td>
</tr>
<tr>
<td>months 7-12</td>
<td>500 - 800µg/l</td>
<td>100 - 200µg/l</td>
</tr>
<tr>
<td>Long term</td>
<td>400 - 600µg/l</td>
<td>50 - 150µg/l</td>
</tr>
</tbody>
</table>

With Everolimus 40 - 80µg/l

Other medications:
Plan to stop
1. Nystatin 4 weeks
2. Valganciclovir 12 months
3. Ranitidine 6 months
4. Cotrimoxazole indefinitely

Note:
These regimens may not be appropriate for all. Please discuss if in doubt.
Appendix 9: Discharge letter template

PRINCE OF WALES HOSPITAL
DEPARTMENT OF NEPHROLOGY
LEVEL 3, HIGH STREET BUILDING
PHONE: 9382 4473 / 4447
FAX: 9382 4409

RENAL TRANSPLANT
DISCHARGE LETTER

Department of Renal Medicine
St George Hospital
Gray Street,
Kogarah, NSW 2217

Dear XX,

Patient name: DOB: MRN (POWH):
Usual nephrologist/unit:
Admitted: Discharged:
Renal physician at POWH:
Type of Transplant: DBD □ DCD □ SCD □ ECD □ LD □
Date of transplant:
Recipient surgeon: Donor surgeon:

Past medical history:

Serology:

<table>
<thead>
<tr>
<th></th>
<th>CMV IgG</th>
<th>EBV IgG</th>
<th>Hep B sAg</th>
<th>Hep B sAb</th>
<th>Hep B cAb</th>
<th>Hep C IgG</th>
<th>HIV IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Immunological risk factors:

<table>
<thead>
<tr>
<th>Blood group</th>
<th>HLA Class I</th>
<th>HLA Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Recipient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Previous
Donor

Current PRA (%): Peak PRA (%): Donor specific antibody?

DSA specificities and MFI:
Transplant summary:

Operative Information:

<table>
<thead>
<tr>
<th>Donor kidney:</th>
<th>Implantated:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of arteries:</td>
<td>Warm ischaemic time:</td>
</tr>
<tr>
<td>Number of veins:</td>
<td>Cold ischaemic time:</td>
</tr>
<tr>
<td>Number of ureters:</td>
<td>Ureteric stent placed?</td>
</tr>
</tbody>
</table>

Intraoperative complications:

Initial function:

1. **SCr-fall >10% within 24h**
2. **SCr-fall >10% within 25-72h**
3. No spontaneous fall in SCr within 72h, no dialysis
4. Dialysis within 72h

Induction Immunosuppression:

- Basiliximab induction ☐ / Thymoglobulin ☐
- Prednisolone ☐ / Mycophenolate ☐ / Azathioprine ☐ / Initiated on Tacrolimus / Cyclosporin
- Plasma exchange ☐ / IV immunoglobulin ☐

Current Medications:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Frequency</th>
<th>Drug</th>
<th>Dose</th>
<th>Frequency</th>
</tr>
</thead>
</table>

Recent Tacrolimus/Cyclosporin doses and levels:

<table>
<thead>
<tr>
<th>Date:</th>
<th>Dosage:</th>
<th>Morning</th>
<th>Evening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine:</td>
<td>Level:</td>
<td>Current target range:</td>
<td></td>
</tr>
</tbody>
</table>

Ongoing issues:

Many thanks for your ongoing care of this patient.

Kind regards,
Appendix 10: Screening for New Onset Diabetes after Transplantation (NODAT)

A diagnosis of new-onset diabetes after transplantation (NODAT) carries with it a threat to the renal allograft, as well as the same short- and long-term implications of type 2 diabetes seen in the general population.

Definition of NODAT:
NODAT is present if the patient has:
- symptoms of DM,
- casual plasma glucose ≥ 11.1 mmol/L,
- abnormal OGTT, with a 2-h value of ≥ 11.1 mmol/L,
- 8-h fasting plasma glucose ≥ 7.0 mmol/L.

Screening for NODAT:
- All patients should have a fasting blood glucose measured weekly during the first 4 weeks post-transplant, then at 3 and 6 months post-transplant, and then yearly.
- A glycated haemoglobin (HbA1c) can be checked after three months post-transplant, particularly if it is difficult to obtain fasting plasma-glucose levels.
- An OGTT performed at 10 weeks post-transplant may help to predict longer-term hyperglycaemia.
- Self-testing of blood glucose in the afternoon during the early post-transplant phase has been associated with an increased rate of detection of NODAT.
- Among patients who have HbA1c >6%, we recommend home BSL monitoring and assessment of an HbA1c quarterly.

Management of NODAT:
- Additional therapy beyond diet and exercise is not recommended until the HbA1c is >7%.
- Metformin improves insulin sensitivity, which is often affected in NODAT. The safety of metformin in KTR with sufficient renal function has been formally demonstrated.