High Cut Off (HCO) Dialysis:

Treatment of Acute Renal Failure from Multiple Myeloma Cast Nephropathy

Bottom Line

Criteria for initiating therapy

Funding for costs of treatment with the Theralite membranes will be available for patients with the following:

- → Biopsy-Proven Myeloma Cast Nephropathy with <20% interstitial chronic damage
- → Dialysis Requiring Acute Renal Failure (eGFR or Cr Cl <15ml/minute)
- → Abnormal serum Free Light Chain (FLC) ratio (>500mg/L)
- → Effective anti-myeloma therapy in conjunction with Haematology Unit.

HCO Dialysis Process:

- <u>HCO is an Intensive dialysis therapy</u> for 8 hours per day x5 days (week 1), followed by 8 hours per day alternate daily (weeks 2 and 3) = total 3 weeks
- Dialysis treatment with HCO membranes is effective in prolonged reduction of serum FLCs only when used in conjunction with **intensive chemotherapy** (usually given towards the end of dialysis session)
- Intensive dialysis with HCO membranes may **diminish the response to active sepsis**, and caution should be exercised in this clinical scenario
- Monitor Free Kappa Light Chains (FLCs) pre and post dialysis
 - 0. Likelihood of dialysis independence is dependent of FLCs reduction
 - Therefore aim for sustained reduction of >50% by day 12 (in this scenario 75% became dialysis independent, if not then only 50% chance of dialysis independence)
 - \circ $\,$ Prime the lines with 1L saline & 5000 units of Heparin $\,$
 - Heparin -check patient's platelet level and if below 100 low dose heparin 500u/s loading with 200-1000u/s maintenance.
 - If the platelet level is reasonable (above 100) then use 1000u/s stat and 500-1000u/s maintenance.
 - Flush lines with normal saline 200mls hourly and assess the dialysis membrane for clotting. If streaks and clots are present, increase Heparin dose at the rate of 250u/s per hour to prevent further clotting.
 - Up to 1500u/s Heparin per hour can be used to ensure the dialysis membrane remains clear of streaks
 - Maximum blood flow rates 250-300ml/min need to be achieved before adjusting heparin doses.
- **Dialysate** 2 bottles of dialysate (as per prescription) and check K+ level pre and at 4hrs, as again since the dialyser is so porous
 - Use 4K dialysate bath, and oral potassium if required
 - Blood tests- must be done at the pre HD, 4hr and post stage of treatment.
 - Pre U+E's, LFT's, CMP, FBC, APTT and Free light chain (1 large yellow top)
 - \circ 4hrs U+E's, LFT's and CMP
 - Post U+E's, LFT's, CMP, FBC and Free light chain
 - All blood tests need to be marked urgently so changes can be made promptly according to the results.
 - Free light chain tests are sent to RPA for processing.

- **Phosphate** requires close monitoring if it drops below 0.8 on pre-dialysis bloods, then
 - 50mls of PO4 solution is initially added to the 5L acid concentrate (dose may change according to Dr's orders) Dose can be increased to 133mls if the PO4- is dropping.
 - Add Fleet enema only after dialysis machine has completed the function check phase. Adding enema to 5L acid concentrate too early could cause machine problems. If the dose changes a fresh bottle of acid is required with the new dose of fleet enema.
 - o Replace phosphate orally as required
- Albumin due to the dialyser being so porous, the patient's albumin must be
 - checked as *urgent* pre and at 4hrs.
 - o If it's <u>below 20</u>, the patient will need to have albumex 20% in 100mls
- Calcium monitoring

٠

- Can change dialysate bath according to Ca levels
- Magnesium monitoring
 - Replace orally
 - If Magnesium below 0.74 mmol/L, give intravenous Magnesium 10mmol in 100ml normal saline over 1 hour.
 - Maximum 30mmol over the duration of each dialysis treatment.