<u>Guidelines and Recommendations for selecting the appropriate potassium</u> <u>concentration dialysate</u>

Management Strategies

- Ideal pre-dialysis plasma potassium [K] should be ±5mmol/L
- For chronic dialysis patients
- Default dialysate potassium concentration is 2 mmol/L ().
- Monthly potassium monitoring should take place.
- Check serum potassium for all inpatients prior to commencing dialysis treatment.
- Review bloods each session for acutely unwell patients or if potassium is unstable.
- Selection of the appropriate dialysate can be based on the "Guideline for use of Dialysate based on the serum potassium Concentration" (see table below)
- If a change is made in the dialysate, potassium should be monitored <u>for at least another 3 dialysis</u> <u>sessions</u> before deciding on the new prescription, thereafter **the prescription needs review** weekly for a month and revise accordingly.
- New patients need weekly potassium checks for 4-6weeks to evaluate trends.

Table 1. Guideline for use of Dialysate based on Serum Potassium Concentration

Serum potassium concentration (mmol/L)	Dialycate notassium concentration (mmol/L)
Serum polassium concentration (minor/L)	Dialysate potassium concentration (mmol/L)
	(For acute patients / new start to dialysis)
< <u>+</u> 4.0	Use 4.0K (K4) Bath
	(Alert medical team if pre-dialysis potassium
	consistently < 3.0)
<u>+</u> 4.1 – <u>+</u> 4.5	Use 3.0K (K3) Bath OR
<u>+</u> 4.6 - <u>+</u> 5.5	Use 2.0K (K2) Bath
	This group may have a range so bath depends on
	patients potassium trend with monitoring
<u>+</u> 5.6 – <u>+</u> 6.5	Use 2.0K (K2) Bath but sometimes 1.0K (K1) bath
	may be necessary in the higher range too
	(consider longer dialysis hours if able)
	(Review medications and consider Dietician review if
	persisting trend)
<u>+</u> 6.6 - <u>+</u> 8.0	Initiate with 1.0K (K1) in 1 st session then change
	to 2.0K (K2) bath, depending on underlying
	disease e.g. cardiac and also the long-term trend
	Dialyse as long as possible, ideally for 5-6 hrs
	(Repeat serum K > 2hrs post dialysis)
	(Consider urgent Dietician & Medical review)

NOTE: THIS TABLE IS JUST A GUIDE, CLOSE MONITORING OF THE PATIENTS TRENDS IS CRITICALLY IMPORTANT IN ORDER TO DETERMINE THE APPROPRIATE POTASSIUM BATH.

Special Situations

- Low K⁺ dialysate (1mmol/L) should be reviewed at each dialysis session by the team and should not be used long-term.
- If Pre-dialysis **serum K⁺ > 8mmol/L** dialyse against 1.0mmol/L for 1 hour and then change to 2mmol/L with repeat UEC >2hrs post-dialysis
- Significant **acidosis** monitor serum potassium (intracellular potassium shift upon correction of acidosis)
- Patients on **Digoxin** aim for serum potassium >4.0 mmol/L (document in Care Plan)
- Underlying **cardiac arrhythmia** suggest maintain serum potassium > 4.0 mmol/L (along with a dialysate Ca 1.75 mmol/L).

- **Potassium supplements** need regular review of medications and blood tests.
- Rhabdomyolysis & refractory hyperkalaemia may need CRRT.

Multidisciplinary approach

- Liaise with **medical team** if there is any perceived issue with electrolyte management on haemodialysis.
- Inform medical team if patient is currently having concomitant acute therapy like cancer therapy (chemotherapy, radiation or plasmapheresis), elective surgery (private/public) or physiotherapy/rehabilitation.
- Early involvement of Dietician and Social Worker as per departmental protocols.

Background Information

A significant challenge in the haemodialysis patient is reducing the risk of sudden cardiac death. During dialysis, the removed potassium comes mainly from the relatively small extracellular compartment. However after a few hours the serum potassium concentration would bounce back as a result of entry of intracellular potassium into the blood. While aggressive ultrafiltration can lead to intra-dialysis hypotension; hypokalaemia and hyperkalaemia can lead to life-threatening cardiac arrhythmias [1, 2].

Patients with end-stage kidney disease are prone to hyperkalaemia. The amount of potassium removed during a haemodialysis treatment is inversely proportional to the potassium concentration in the dialysis bath, but so is the risk of intra-dialysis hypotension [3]. The usual dialysate potassium level is 2 mmol/L and considered safe [4]. Very low concentrations of dialysate potassium should avoided if possible because rapid decline in plasma potassium concentration [5], during the early phase of haemodialysis, is arrhythmogenic [6]. Using longer dialysis sessions allows the application of lower dialysate/plasma gradients for potassium, without jeopardizing total potassium removal and having more favourable outcomes [7].

The management of serum potassium in a haemodialysis patient remains an ongoing challenge, as numerous metabolic variables affect the intracellular/extracellular potassium flux. The concurrent use of newer oral potassium binders will optimise management further. The individualization of dialysis prescription and dialysate composition may improve intra-dialytic morbidity, and perhaps mortality, when coupled with improved clinical practices and quality-control processes.

References

- 1. Lowrie EG, L.N., *Death risk in hemodialysis patients: The predictive value of commonly measured variables and an evaluation of death rate differences between facilities.* Am J Kidney Dis, 1990. **15**(5): p. 458-482.
- 2. Iseki, K., et al., *Impact of the initial levels of laboratory variables on survival in chronic dialysis patients.* Am J Kidney Dis, 1996. **28**(4): p. 541-8.
- 3. Lafrance, J.P., et al., *Predictors and outcome of cardiopulmonary resuscitation (CPR) calls in a large haemodialysis unit over a seven-year period.* Nephrol Dial Transplant, 2006. **21**(4): p. 1006-12.
- 4. Kovesdy CP, R.D., Mehrotra R, Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin J Am Soc Nephrol, 2007. **2**(5): p. 999-1007.
- 5. Locatelli F, L.M.V., et. al., *Optimising haemodialysate composition*. Clinical Kidney Journey, 2015: p. 1-10.
- 6. Chan, C.T., et al., Novel techniques and innovation in blood purification: a clinical update from *Kidney Disease: Improving Global Outcomes.* Kidney Int, 2013. **83**(3): p. 359-71.
- Lameire, N., W. Van Biesen, and R. Vanholder, *Did 20 years of technological innovations in hemodialysis contribute to better patient outcomes?* Clin J Am Soc Nephrol, 2009. 4 Suppl 1(Suppl 1): p. S30-40.